Idioma: Inglés
Publicado por Apress (edition 1st ed.), 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Original o primera edición
EUR 5,02
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Good. 1st ed. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 22,85
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Original o primera edición
EUR 25,14
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 25,54
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python. Book.
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
EUR 22,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 25,97
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 28,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 23,12
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 2 working days.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 35,53
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2022. 1st ed. paperback. . . . . .
Librería: Chiron Media, Wallingford, Reino Unido
EUR 29,18
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 36,28
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 190 pages. 9.25x6.10x0.43 inches. In Stock.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 34,47
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 32,12
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
EUR 32,05
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 42,28
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2022. 1st ed. paperback. . . . . . Books ship from the US and Ireland.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 53,87
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer, Berlin|Apress, 2023
ISBN 10: 1484289773 ISBN 13: 9781484289778
Librería: moluna, Greven, Alemania
EUR 32,41
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Apress, Apress Dez 2022, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 37,44
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Data Scientists, Machine Learning Engineers, and software developers interested in time series analysis.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 192 pp. Englisch.
Librería: Rarewaves.com UK, London, Reino Unido
Original o primera edición
EUR 23,10
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 33,69
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 51,17
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 37,44
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing.It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python.What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecastingUnderstand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. 192 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 53,64
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 38,62
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing.It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python.What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecastingUnderstand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Librería: preigu, Osnabrück, Alemania
EUR 33,70
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Time Series Algorithms Recipes | Implement Machine Learning and Deep Learning Techniques with Python | Akshay R Kulkarni (u. a.) | Taschenbuch | xvi | Englisch | 2022 | Apress | EAN 9781484289778 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.