Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Kulkarni, Akshay R, Shivananda, Adarsha, Kulkarni, Anoosh, Krishnan, V Adithya

ISBN 10: 1484289773 ISBN 13: 9781484289778
Editorial: Apress Publishers, 2022
Nuevos Encuadernación de tapa blanda

Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 9 de octubre de 2009

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

2022. 1st ed. paperback. . . . . . Books ship from the US and Ireland. N° de ref. del artículo V9781484289778

Denunciar este artículo

Sinopsis:

This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. 

It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.
 
After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python.
 
What You Will Learn
  • Implement various techniques in time series analysis using Python.
  • Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting 
  • Understand univariate and multivariate modeling for time series forecasting
  • Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)
 
Who This Book Is For
Data Scientists, Machine Learning Engineers, and software developers interested in time series analysis.

Acerca del autor:

Akshay Kulkarni is an AI and machine learning (ML) evangelist and a thought leader. He has consulted several Fortune 500 and global enterprises to drive AI and data science-led strategic transformations. He has been honoured as Google Developer Expert, and is an Author and a regular speaker at top AI and data science conferences (including Strata, O’Reilly AI Conf, and GIDS). He is a visiting faculty member for some of the top graduate institutes in India. In 2019, he has been also featured as one of the top 40 under 40 Data Scientists in India. In his spare time, he enjoys reading, writing, coding, and helping aspiring data scientists. He lives in Bangalore with his family.

Adarsha Shivananda is a Data science and MLOps Leader. He is working on creating worldclass MLOps capabilities to ensure continuous value delivery from AI. He aims to build a pool of exceptional data scientists within and outside of the organization to solve problems through training programs, and always wants to stay ahead of the curve. He has worked extensively in the pharma, healthcare, CPG, retail, and marketing domains. He lives in Bangalore and loves to read and teach data science.

Anoosh Kulkarni is a data scientist and a Senior AI consultant. He has worked with global clients across multiple domains and helped them solve their business problems using machine learning (ML), natural language processing (NLP), and deep learning.. Anoosh is passionate about guiding and mentoring people in their data science journey. He leads data science/machine learning meet-ups  and helps aspiring data scientists navigate their careers. He also conducts ML/AI workshops at universities and is actively involved in conducting webinars, talks, and sessions on AI and data science. He lives in Bangalore with his family.

V Adithya Krishnan is a data scientist and ML Ops Engineer. He has worked with various global clients across multiple domainsand helped them to solve their business problems extensively using advanced Machine learning (ML) applications. He has experience across multiple fields of AI-ML, including, Time-series forecasting, Deep Learning, NLP, ML Operations, Image processing, and data analytics. Presently, he is working on  a state-of-the-art value observability suite for models in production, which includes continuous model and data monitoring along with the business value realized. He also published a paper at an IEEE conference, “Deep Learning Based Approach for Range Estimation," written in collaboration with the DRDO. He lives in Chennai with his family.


"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Time Series Algorithms Recipes: Implement ...
Editorial: Apress Publishers
Año de publicación: 2022
Encuadernación: Encuadernación de tapa blanda
Condición: New

Los mejores resultados en AbeBooks

Imagen de archivo

Kulkarni, Akshay R; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Publicado por Apress (edition 1st ed.), 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Antiguo o usado Paperback Original o primera edición

Librería: BooksRun, Philadelphia, PA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Good. 1st ed. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Nº de ref. del artículo: 1484289773-11-1

Contactar al vendedor

Comprar usado

EUR 7,90
Gastos de envío: GRATIS
A Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

V Adithya Krishnan, Akshay R Kulkarni, Adarsha Shivananda, Anoosh Kulkarni
Publicado por APress, US, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback Original o primera edición

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. Nº de ref. del artículo: LU-9781484289778

Contactar al vendedor

Comprar nuevo

EUR 22,76
Gastos de envío: EUR 73,57
De Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Akshay R Kulkarni
Publicado por APress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback / softback

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback / softback. Condición: New. New copy - Usually dispatched within 2 working days. Nº de ref. del artículo: B9781484289778

Contactar al vendedor

Comprar nuevo

EUR 22,77
Gastos de envío: EUR 14,25
De Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kulkarni, Akshay R, Shivananda, Adarsha, Kulkarni
Publicado por 0, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Tapa blanda

Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Nº de ref. del artículo: OTF-S-9781484289778

Contactar al vendedor

Comprar nuevo

EUR 22,87
Gastos de envío: EUR 3,46
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45291587-n

Contactar al vendedor

Comprar nuevo

EUR 23,69
Gastos de envío: EUR 2,29
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

V Adithya Krishnan, Akshay R Kulkarni, Adarsha Shivananda, Anoosh Kulkarni
Publicado por APress, US, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback Original o primera edición

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. Nº de ref. del artículo: LU-9781484289778

Contactar al vendedor

Comprar nuevo

EUR 26,06
Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R.
Publicado por Apress 12/24/2022, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback or Softback. Condición: New. Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python. Book. Nº de ref. del artículo: BBS-9781484289778

Contactar al vendedor

Comprar nuevo

EUR 26,34
Gastos de envío: GRATIS
A Estados Unidos de America

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45291587

Contactar al vendedor

Comprar usado

EUR 26,79
Gastos de envío: EUR 2,29
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Antiguo o usado Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45291587

Contactar al vendedor

Comprar usado

EUR 32,51
Gastos de envío: EUR 16,98
De Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45291587-n

Contactar al vendedor

Comprar nuevo

EUR 33,16
Gastos de envío: EUR 16,98
De Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 11 copia(s) de este libro

Ver todos los resultados de su búsqueda