Artículos relacionados a Time Series Algorithms Recipes: Implement Machine Learning...

Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python - Tapa blanda

 
9781484289778: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Sinopsis

This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. 

It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.
 
After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python.
 
What You Will Learn
  • Implement various techniques in time series analysis using Python.
  • Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting 
  • Understand univariate and multivariate modeling for time series forecasting
  • Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)
 
Who This Book Is For
Data Scientists, Machine Learning Engineers, and software developers interested in time series analysis.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Akshay Kulkarni is an AI and machine learning (ML) evangelist and a thought leader. He has consulted several Fortune 500 and global enterprises to drive AI and data science-led strategic transformations. He has been honoured as Google Developer Expert, and is an Author and a regular speaker at top AI and data science conferences (including Strata, O’Reilly AI Conf, and GIDS). He is a visiting faculty member for some of the top graduate institutes in India. In 2019, he has been also featured as one of the top 40 under 40 Data Scientists in India. In his spare time, he enjoys reading, writing, coding, and helping aspiring data scientists. He lives in Bangalore with his family.

Adarsha Shivananda is a Data science and MLOps Leader. He is working on creating worldclass MLOps capabilities to ensure continuous value delivery from AI. He aims to build a pool of exceptional data scientists within and outside of the organization to solve problems through training programs, and always wants to stay ahead of the curve. He has worked extensively in the pharma, healthcare, CPG, retail, and marketing domains. He lives in Bangalore and loves to read and teach data science.

Anoosh Kulkarni is a data scientist and a Senior AI consultant. He has worked with global clients across multiple domains and helped them solve their business problems using machine learning (ML), natural language processing (NLP), and deep learning.. Anoosh is passionate about guiding and mentoring people in their data science journey. He leads data science/machine learning meet-ups  and helps aspiring data scientists navigate their careers. He also conducts ML/AI workshops at universities and is actively involved in conducting webinars, talks, and sessions on AI and data science. He lives in Bangalore with his family.

V Adithya Krishnan is a data scientist and ML Ops Engineer. He has worked with various global clients across multiple domainsand helped them to solve their business problems extensively using advanced Machine learning (ML) applications. He has experience across multiple fields of AI-ML, including, Time-series forecasting, Deep Learning, NLP, ML Operations, Image processing, and data analytics. Presently, he is working on  a state-of-the-art value observability suite for models in production, which includes continuous model and data monitoring along with the business value realized. He also published a paper at an IEEE conference, “Deep Learning Based Approach for Range Estimation," written in collaboration with the DRDO. He lives in Chennai with his family.


De la contraportada

This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. 


It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.
 
After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python.
 
You will:
  • Implement various techniques in time series analysis using Python.
  • Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting 
  • Understand univariate and multivariate modeling for time series forecasting
  • Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,19 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 2,31 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781484289792: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Edición Destacada

ISBN 10:  148428979X ISBN 13:  9781484289792
Editorial: Apress, 2022
Tapa blanda

Resultados de la búsqueda para Time Series Algorithms Recipes: Implement Machine Learning...

Imagen del vendedor

V Adithya Krishnan, Akshay R Kulkarni, Adarsha Shivananda, Anoosh Kulkarni
Publicado por APress, US, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback Original o primera edición

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. Nº de ref. del artículo: LU-9781484289778

Contactar al vendedor

Comprar nuevo

EUR 29,70
Convertir moneda
Gastos de envío: EUR 2,31
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Akshay R Kulkarni
Publicado por APress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback / softback

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback / softback. Condición: New. New copy - Usually dispatched within 2 working days. 184. Nº de ref. del artículo: B9781484289778

Contactar al vendedor

Comprar nuevo

EUR 29,69
Convertir moneda
Gastos de envío: EUR 5,17
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

V Adithya Krishnan, Akshay R Kulkarni, Adarsha Shivananda, Anoosh Kulkarni
Publicado por APress, US, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback Original o primera edición

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. Nº de ref. del artículo: LU-9781484289778

Contactar al vendedor

Comprar nuevo

EUR 33,12
Convertir moneda
Gastos de envío: EUR 2,31
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kulkarni, Akshay R; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781484289778

Contactar al vendedor

Comprar nuevo

EUR 29,24
Convertir moneda
Gastos de envío: EUR 6,88
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R.
Publicado por Apress 12/24/2022, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback or Softback. Condición: New. Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python 0.61. Book. Nº de ref. del artículo: BBS-9781484289778

Contactar al vendedor

Comprar nuevo

EUR 26,15
Convertir moneda
Gastos de envío: EUR 10,75
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45291587

Contactar al vendedor

Comprar usado

EUR 20,57
Convertir moneda
Gastos de envío: EUR 17,19
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kulkarni, Akshay R; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781484289778_new

Contactar al vendedor

Comprar nuevo

EUR 35,05
Convertir moneda
Gastos de envío: EUR 5,18
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45291587-n

Contactar al vendedor

Comprar nuevo

EUR 23,70
Convertir moneda
Gastos de envío: EUR 17,19
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Akshay Kulkarni
Publicado por APress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Paperback / softback
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9781484289778

Contactar al vendedor

Comprar nuevo

EUR 33,80
Convertir moneda
Gastos de envío: EUR 7,61
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Publicado por Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuevo Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45291587-n

Contactar al vendedor

Comprar nuevo

EUR 29,67
Convertir moneda
Gastos de envío: EUR 17,30
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 11 copia(s) de este libro

Ver todos los resultados de su búsqueda