Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 50,29
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 52,62
Cantidad disponible: 15 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
EUR 48,65
Cantidad disponible: 15 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 54,10
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 58,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: CreativeCenters, Peoria, IL, Estados Unidos de America
EUR 54,01
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New.
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
EUR 54,71
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: new.
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 66,11
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.Understand the importance of graph learning for boosting enterprise-grade applicationsNavigate the challenges surrounding the development and deployment of enterprise-ready graph learning and inference pipelinesUse traditional and advanced graph learning techniques to tackle graph use casesUse and contribute to PyGraf, an open source graph learning library, to help embed best practices while building graph applicationsDesign and implement a graph learning algorithm using publicly available and syntactic dataApply privacy-preserved techniques to the graph learning process.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 50,65
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 56,92
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 73,55
Cantidad disponible: 20 disponibles
Añadir al carritoPaperback. Condición: New. Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.Understand the importance of graph learning for boosting enterprise-grade applicationsNavigate the challenges surrounding the development and deployment of enterprise-ready graph learning and inference pipelinesUse traditional and advanced graph learning techniques to tackle graph use casesUse and contribute to PyGraf, an open source graph learning library, to help embed best practices while building graph applicationsDesign and implement a graph learning algorithm using publicly available and syntactic dataApply privacy-preserved techniques to the graph learning process.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 68,15
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Publicado por O'Reilly Media 9/16/2025, 2025
ISBN 10: 1098146069 ISBN 13: 9781098146061
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 76,28
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Scaling Graph Learning for the Enterprise: Production-Ready Graph Learning and Inference. Book.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 59,48
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 59,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 76,71
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 78,88
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Publicado por Oreilly & Associates Inc, 2025
ISBN 10: 1098146069 ISBN 13: 9781098146061
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 77,78
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 400 pages. 9.19x7.00x9.19 inches. In Stock.
Publicado por O'Reilly Media, Sebastopol, 2025
ISBN 10: 1098146069 ISBN 13: 9781098146061
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 57,74
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.Understand the importance of graph learning for boosting enterprise-grade applicationsNavigate the challenges surrounding the development and deployment of enterprise-ready graph learning and inference pipelinesUse traditional and advanced graph learning techniques to tackle graph use casesUse and contribute to PyGraf, an open source graph learning library, to help embed best practices while building graph applicationsDesign and implement a graph learning algorithm using publicly available and syntactic dataApply privacy-preserved techniques to the graph learning process With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 67,83
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.Understand the importance of graph learning for boosting enterprise-grade applicationsNavigate the challenges surrounding the development and deployment of enterprise-ready graph learning and inference pipelinesUse traditional and advanced graph learning techniques to tackle graph use casesUse and contribute to PyGraf, an open source graph learning library, to help embed best practices while building graph applicationsDesign and implement a graph learning algorithm using publicly available and syntactic dataApply privacy-preserved techniques to the graph learning process.
EUR 68,34
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por O'Reilly Media, Sebastopol, 2025
ISBN 10: 1098146069 ISBN 13: 9781098146061
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 96,38
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.Understand the importance of graph learning for boosting enterprise-grade applicationsNavigate the challenges surrounding the development and deployment of enterprise-ready graph learning and inference pipelinesUse traditional and advanced graph learning techniques to tackle graph use casesUse and contribute to PyGraf, an open source graph learning library, to help embed best practices while building graph applicationsDesign and implement a graph learning algorithm using publicly available and syntactic dataApply privacy-preserved techniques to the graph learning process With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
EUR 68,66
Cantidad disponible: 20 disponibles
Añadir al carritoPaperback. Condición: New. Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.Understand the importance of graph learning for boosting enterprise-grade applicationsNavigate the challenges surrounding the development and deployment of enterprise-ready graph learning and inference pipelinesUse traditional and advanced graph learning techniques to tackle graph use casesUse and contribute to PyGraf, an open source graph learning library, to help embed best practices while building graph applicationsDesign and implement a graph learning algorithm using publicly available and syntactic dataApply privacy-preserved techniques to the graph learning process.
Publicado por O'reilly Media Sep 2025, 2025
ISBN 10: 1098146069 ISBN 13: 9781098146061
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 80,95
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware - Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.
Librería: preigu, Osnabrück, Alemania
EUR 77,05
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Scaling Graph Learning for the Enterprise | Production-Ready Graph Learning and Inference | Ahmed Menshawy (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2025 | O'Reilly Media | EAN 9781098146061 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Publicado por O'Reilly Media, Sebastopol, 2025
ISBN 10: 1098146069 ISBN 13: 9781098146061
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 61,51
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.Understand the importance of graph learning for boosting enterprise-grade applicationsNavigate the challenges surrounding the development and deployment of enterprise-ready graph learning and inference pipelinesUse traditional and advanced graph learning techniques to tackle graph use casesUse and contribute to PyGraf, an open source graph learning library, to help embed best practices while building graph applicationsDesign and implement a graph learning algorithm using publicly available and syntactic dataApply privacy-preserved techniques to the graph learning process With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Oreilly & Associates Inc, 2025
ISBN 10: 1098146069 ISBN 13: 9781098146061
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 71,56
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 400 pages. 9.19x7.00x9.19 inches. In Stock. This item is printed on demand.