EUR 49,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 59,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 55,92
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Principles of Advanced Mathematical Physics: Volume II 1.04. Book.
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The Campbe.
Publicado por Springer, Springer Jun 2012, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: Wegmann1855, Zwiesel, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 49,93
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 53,44
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 54,15
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 64,97
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 56,24
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,30
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 48,28
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 77,61
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Series: Theoretical and Mathematical Physics. Num Pages: 334 pages, biography. BIC Classification: PHU. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 18. Weight in Grams: 516. . 2012. Softcover reprint of the original 1st ed. 1981. Paperback. . . . .
EUR 78,59
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 336 pages. 9.25x6.10x0.80 inches. In Stock.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 95,57
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Series: Theoretical and Mathematical Physics. Num Pages: 334 pages, biography. BIC Classification: PHU. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 18. Weight in Grams: 516. . 2012. Softcover reprint of the original 1st ed. 1981. Paperback. . . . . Books ship from the US and Ireland.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,28
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 55,77
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 108,92
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Alemania
EUR 150,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritogebundene Ausgabe. Condición: Gut. 322 Seiten Schnitt und Einband sind leicht staubschmutzig; der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. ENGLISCH. Sprache: Englisch Gewicht in Gramm: 660.
Publicado por Springer, Springer Jun 2012, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The Campbe 336 pp. Englisch.
Publicado por Springer, Springer Jun 2012, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The Campbe 336 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 47,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 18 Elementary Group Theory.- 18.1 The group axioms examples.- 18.2 Elementary consequences of the axioms further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The .
Librería: Revaluation Books, Exeter, Reino Unido
EUR 68,97
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 336 pages. 9.25x6.10x0.80 inches. In Stock. This item is printed on demand.
Publicado por Springer, Springer Jun 2012, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The CampbeSpringer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 336 pp. Englisch.