Principles of Advanced Mathematical Physics: Volume II (Theoretical and Mathematical Physics)

Richtmyer, R.D. D.

ISBN 10: 3642510787 ISBN 13: 9783642510786
Editorial: Springer, 2012
Nuevos Encuadernación de tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 25 de marzo de 2015

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

In. N° de ref. del artículo ria9783642510786_new

Denunciar este artículo

Detalles bibliográficos

Título: Principles of Advanced Mathematical Physics:...
Editorial: Springer
Año de publicación: 2012
Encuadernación: Encuadernación de tapa blanda
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

R.D. Richtmyer
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 18 Elementary Group Theory.- 18.1 The group axioms examples.- 18.2 Elementary consequences of the axioms further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The . Nº de ref. del artículo: 5063275

Contactar al vendedor

Comprar nuevo

EUR 47,23
EUR 48,99 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

R. D. Richtmyer
Publicado por Springer, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Principles of Advanced Mathematical Physics | Volume II | R. D. Richtmyer | Taschenbuch | xi | Englisch | 2012 | Springer | EAN 9783642510786 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 105259593

Contactar al vendedor

Comprar nuevo

EUR 48,20
EUR 70,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

R.D. Richtmyer
Publicado por Springer, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo PAP

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: DB-9783642510786

Contactar al vendedor

Comprar nuevo

EUR 49,18
EUR 5,75 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Richtmyer, R.D. D.
Publicado por Springer, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020230125

Contactar al vendedor

Comprar nuevo

EUR 52,13
EUR 3,39 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

R.D. Richtmyer
Publicado por Springer, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo PAP

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: DB-9783642510786

Contactar al vendedor

Comprar nuevo

EUR 52,37
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

R. D. Richtmyer
Publicado por Springer, Springer Jun 2012, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo Taschenbuch

Librería: Wegmann1855, Zwiesel, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware. Nº de ref. del artículo: 9783642510786

Contactar al vendedor

Comprar nuevo

EUR 53,49
EUR 25,95 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

R. D. Richtmyer
Publicado por Springer, Springer Jun 2012, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo Taschenbuch
Impresión bajo demanda

Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The Campbe 336 pp. Englisch. Nº de ref. del artículo: 9783642510786

Contactar al vendedor

Comprar nuevo

EUR 53,49
EUR 23,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

R. D. Richtmyer
Publicado por Springer, Springer Jun 2012, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The CampbeSpringer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 336 pp. Englisch. Nº de ref. del artículo: 9783642510786

Contactar al vendedor

Comprar nuevo

EUR 53,49
EUR 60,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

R. D. Richtmyer
Publicado por Springer, Springer Jun 2012, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The Campbe 336 pp. Englisch. Nº de ref. del artículo: 9783642510786

Contactar al vendedor

Comprar nuevo

EUR 53,49
EUR 23,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

R. D. Richtmyer
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642510787 ISBN 13: 9783642510786
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Inhaltsangabe18 Elementary Group Theory.- 18.1 The group axioms; examples.- 18.2 Elementary consequences of the axioms; further definitions.- 18.3 Isomorphism.- 18.4 Permutation groups.- 18.5 Homomorphisms; normal subgroups.- 18.6 Cosets.- 18.7 Factor groups.- 18.8 The Law of Homomorphism.- 18.9 The structure of cyclic groups.- 18.10 Translations, inner automorphisms.- 18.11 The subgroups of 4.- 18.12 Generators and relations; free groups.- 18.13 Multiply periodic functions and crystals.- 18.14 The space and point groups.- 18.15 Direct and semidirect products of groups; symmorphic space groups.- 19 Continuous Groups.- 19.1 Orthogonal and rotation groups.- 19.2 The rotation group SO(3); Euler's theorem.- 19.3 Unitary groups.- 19.4 The Lorentz groups.- 19.5 Group manifolds.- 19.6 Intrinsic coordinates in the manifold of the rotation group.- 19.7 The homomorphism of SU(2) onto SO(3).- 19.8 The homomorphism of SL(2, ) onto the proper Lorentz group p. 19.9 Simplicity of the rotation and Lorentz groups. 20 Group Representations I: Rotations and Spherical Harmonics. 20.1 Finitedimensional representations of a group. 20.2 Vector and tensor transformation laws. 20.3 Other group representations in physics. 20.4 Infinitedimensional representations. 20.5 A simple case: SO(2). 20.6 Representations of matrix groups on X . 20.7 Homogeneous spaces. 20.8 Regular representations. 20.9 Representations of the rotation group SO(3). 20.10 Tesseral harmonics; Legendre functions. 20.11 Associated Legendre functions. 20.12 Matrices of the irreducible representations of SO(3); the Euler angles. 20.13 The addition theorem for tesseral harmonics. 20.14 Completeness of the tesseral harmonics. 21 Group Representations II: General; Rigid Motions; Bessel Functions. 21.1 Equivalence; unitary representations. 21.2 The reduction of representations. 21.3 Schur's Lemma and its corollaries. 21.4 Compact and noncompact groups. 21.5 Invariant integration; Haar measure. 21.6 Complete system of representations of a compact group. 21.7 Homogeneous spaces as configuration spaces in physics. 21.8 M2 and related groups. 21.9 Representations of M2. 21.10 Some irreducible representations. 21.11 Bessel functions. 21.12 Matrices of the representations. 21.13 Characters. 22 Group Representations and Quantum Mechanics. 22.1 Representations in quantum mechanics. 22.2 Rotations of the axes. 22.3 Ray representations. 22.4 A finitedimensional case. 22.5 Local representations. 22.6 Origin of the twovalued representations. 22.7 Representations of SU(2) and SL(2, ). 22.8 Irreducible representations of SU(2). 22.9 The characters of SU(2). 22.10 Functions of z and z . 22.11 The finitedimensional representations of SL(2, ). 22.12 The irreducible invariant subspaces of X for SL(2, ). 22.13 Spinors. 23 Elementary Theory of Manifolds. 23.1 Examples of manifolds; method of identification. 23.2 Coordinate systems or charts; compatibility; smoothness. 23.3 Induced topology. 23.4 Definition of manifold; Hausdorff separation axiom. 23.5 Curves and functions in a manifold. 23.6 Connectedness; components of a manifold. 23.7 Global topology; homotopic curves; fundamental group. 23.8 Mechanical linkages: Cartesian products. 24 Covering Manifolds. 24.1 Definition and examples. 24.2 Principles of lifting. 24.3 Universal covering manifold. 24.4 Comments on the construction of mathematical models. 24.5 Construction of the universal covering. 24.6 Manifolds covered by a given manifold. 25 Lie Groups. 25.1 Definitions and statement of objectives. 25.2 The expansions of m( , ) and l( , ). 25.3 The Lie algebra of a Lie group. 25.4 Abstract Lie algebras. 25.5 The Lie algebras of linear groups. 25.6 The exponential mapping; logarithmic coordinates. 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad . 25.8 Auxiliary lemmas on formal derivatives. 25.9 An auxiliary lemma on the differentiation of exponentials. 25.10 The Campbe. Nº de ref. del artículo: 9783642510786

Contactar al vendedor

Comprar nuevo

EUR 53,49
EUR 62,56 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 7 copia(s) de este libro

Ver todos los resultados de su búsqueda