Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 40,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.1.
Librería: Goodwill Industries of VSB, Oxnard, CA, Estados Unidos de America
EUR 76,27
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Acceptable. The book is 100% readable but visibly worn, and damaged. This may include stains, tears, rips, folded pages, binding damage, dents, scuffs, scratches and sticker residue. The book also may contain heavy highlighting and notes. Please ask for photos as our books are donations and may not contain above mentioned defects. There is a signature or handwriting on the inside front cover.
Publicado por Springer-Verlag New York Inc., 2000
ISBN 10: 0387945598 ISBN 13: 9780387945590
Idioma: Inglés
Librería: Ammareal, Morangis, Francia
EUR 79,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Bon. Ancien livre de bibliothèque avec équipements. Edition 2000. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Edition 2000. Ammareal gives back up to 15% of this item's net price to charity organizations.
Publicado por Springer (edition 2nd), 1999
ISBN 10: 0387987800 ISBN 13: 9780387987804
Idioma: Inglés
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
EUR 138,21
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Fair. 2nd. The item might be beaten up but readable. May contain markings or highlighting, as well as stains, bent corners, or any other major defect, but the text is not obscured in any way.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 138,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: Solr Books, Lincolnwood, IL, Estados Unidos de America
EUR 141,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear.
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
EUR 167,57
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: New. In shrink wrap. Looks like an interesting title!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 217,02
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 219,34
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
EUR 212,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 222,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 216,84
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 216,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
EUR 211,33
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 217,25
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 228,41
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 217,24
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 225,62
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 241,59
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 189,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. Written in readable and concise style and devoted to key learning problems, the book is intended for statisticians, mathematicia.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 247,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 258,04
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 258,04
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag New York Inc., New York, NY, 2010
ISBN 10: 1441931600 ISBN 13: 9781441931603
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 258,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation * a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 242,37
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer-Verlag New York Inc., New York, NY, 1999
ISBN 10: 0387987800 ISBN 13: 9780387987804
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 260,66
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques.These include: * the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation * a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of Discusses the fundamental ideas which lie behind the statistical theory of learning and generalization. This book considers learning as a general problem of function estimation based on empirical data. It concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 247,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
EUR 308,62
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Publicado por Springer-Verlag New York Inc., US, 1999
ISBN 10: 0387987800 ISBN 13: 9780387987804
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 312,50
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. Second Edition 2000. The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation * a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader ATandT Labs-Research and Professor of London University. He is one of the founders of.
Publicado por Springer New York, Springer US, 2010
ISBN 10: 1441931600 ISBN 13: 9781441931603
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 249,24
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: \* the setting of learning problems based on the model of minimizing the risk functional from empirical data \* a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency \* non-asymptotic bounds for the risk achieved using the empirical risk minimization principle \* principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds \* the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: \* the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation \* a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of.