The aim of this text is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connection to fundamental problems in statistics. These include: the general setting of learning problems and the general model of minimizing the risk functional from empirical data; an analysis of the empirical risk minimization principle and shows how this allows for the construction of necessary and sufficient conditions for consistency; non-asymptotic bounds for the risk achieved using the empirical risk minimization principle; princples for controlling the generalization ability of learning machines using small sample sizes; and introducing a new type of universal learning machine that controls the generalization ability.
"Sinopsis" puede pertenecer a otra edición de este libro.
"This interesting book helps a reader to understand the interconnections between various streams in the empirical modeling realm and may be recommended to any reader who feels lost in modern terminology." V.V. Fedorov, Oak Ridge National Laboratory, USA
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: - the general setting of learning problems and the general model of minimizing the risk functional from empirical data - a comprehensive analysis of the empirical risk minimization principle and shows how this allows for the construction of necessary and sufficient conditions for consistency - non-asymptotic bounds for the risk achieved using the empirical risk minimization principle - principles for controlling the generalization ability of learning machines using small sample sizes - introducing a new type of universal learning machine that controls the generalization ability.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 25,68 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 203 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 41818288/202
Cantidad disponible: 1 disponibles
Librería: Ammareal, Morangis, Francia
Hardcover. Condición: Bon. Ancien livre de bibliothèque avec équipements. Edition 2000. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Edition 2000. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: G-128-794
Cantidad disponible: 1 disponibles
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
Hardcover. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Nº de ref. del artículo: Scanned0387945598
Cantidad disponible: 1 disponibles