Search preferences
Ir a los resultados principales

Filtros de búsqueda

Tipo de artículo

  • Todos los tipos de productos 
  • Libros (16)
  • Revistas y publicaciones (No hay ningún otro resultado que coincida con este filtro.)
  • Cómics (No hay ningún otro resultado que coincida con este filtro.)
  • Partituras (No hay ningún otro resultado que coincida con este filtro.)
  • Arte, grabados y pósters (No hay ningún otro resultado que coincida con este filtro.)
  • Fotografías (No hay ningún otro resultado que coincida con este filtro.)
  • Mapas (No hay ningún otro resultado que coincida con este filtro.)
  • Manuscritos y coleccionismo de papel (No hay ningún otro resultado que coincida con este filtro.)

Condición Más información

  • Nuevo (15)
  • Como nuevo, Excelente o Muy bueno (1)
  • Bueno o Aceptable (No hay ningún otro resultado que coincida con este filtro.)
  • Regular o Pobre (No hay ningún otro resultado que coincida con este filtro.)
  • Tal como se indica (No hay ningún otro resultado que coincida con este filtro.)

Encuadernación

  • Todas 
  • Tapa dura (16)
  • Tapa blanda (No hay ningún otro resultado que coincida con este filtro.)

Más atributos

  • Primera edición (No hay ningún otro resultado que coincida con este filtro.)
  • Firmado (No hay ningún otro resultado que coincida con este filtro.)
  • Sobrecubierta (No hay ningún otro resultado que coincida con este filtro.)
  • Con imágenes (4)
  • No impresión bajo demanda (13)

Idioma (1)

Precio

  • Cualquier precio 
  • Menos de EUR 20 (No hay ningún otro resultado que coincida con este filtro.)
  • EUR 20 a EUR 45 (No hay ningún otro resultado que coincida con este filtro.)
  • Más de EUR 45 
Intervalo de precios personalizado (EUR)

Ubicación del vendedor

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Publicado por Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 75,07

    EUR 2,28 gastos de envío en Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Condición: As New. Unread book in perfect condition.

  • Uday Kamath

    Publicado por Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 68,76

    EUR 8,66 gastos de envío desde Reino Unido a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Publicado por Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 77,38

    EUR 2,28 gastos de envío en Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Condición: New.

  • Uday Kamath

    Publicado por Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 79,75

    Gratis gastos de envío en Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMstheir intricate architecture, underlying algorithms, and ethical considerationsrequire thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Publicado por Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: California Books, Miami, FL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 91,50

    Gratis gastos de envío en Estados Unidos de America

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New.

  • Kamath, Uday/ Keenan, Kevin/ Somers, Garrett/ Sorenson, Sarah

    Publicado por Springer-Nature New York Inc, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: Revaluation Books, Exeter, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 75,94

    EUR 17,02 gastos de envío desde Reino Unido a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: Brand New. 400 pages. 9.25x6.10x10.00 inches. In Stock.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Publicado por Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: Books Puddle, New York, NY, Estados Unidos de America

    Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 94,61

    EUR 3,44 gastos de envío en Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Condición: New. 2024th edition NO-PA16APR2015-KAP.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Publicado por Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: Majestic Books, Hounslow, Reino Unido

    Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 97,98

    EUR 7,37 gastos de envío desde Reino Unido a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Condición: New.

  • Uday Kamath

    Publicado por Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: CitiRetail, Stevenage, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 73,60

    EUR 41,97 gastos de envío desde Reino Unido a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMstheir intricate architecture, underlying algorithms, and ethical considerationsrequire thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Kamath, Uday/ Keenan, Kevin/ Somers, Garrett/ Sorenson, Sarah

    Publicado por Springer-Nature New York Inc, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: Revaluation Books, Exeter, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 126,86

    EUR 17,02 gastos de envío desde Reino Unido a Estados Unidos de America

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Hardcover. Condición: Brand New. 400 pages. 9.25x6.10x10.00 inches. In Stock.

  • Uday Kamath

    Publicado por Springer Nature Switzerland, Springer International Publishing Aug 2024, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 80,24

    EUR 60,00 gastos de envío desde Alemania a Estados Unidos de America

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Neuware -Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs¿their intricate architecture, underlying algorithms, and ethical considerations¿require thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficientlySpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 508 pp. Englisch.

  • Uday Kamath

    Publicado por Springer Nature Switzerland, Springer International Publishing, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: AHA-BUCH GmbH, Einbeck, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 80,24

    EUR 65,72 gastos de envío desde Alemania a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs-their intricate architecture, underlying algorithms, and ethical considerations-require thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently.

  • Uday Kamath

    Publicado por Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: AussieBookSeller, Truganina, VIC, Australia

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 127,64

    EUR 31,91 gastos de envío desde Australia a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMstheir intricate architecture, underlying algorithms, and ethical considerationsrequire thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Uday Kamath

    Publicado por Springer Nature Switzerland, Springer Nature Switzerland Aug 2024, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 80,24

    EUR 23,00 gastos de envío desde Alemania a Estados Unidos de America

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs-their intricate architecture, underlying algorithms, and ethical considerations-require thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently 508 pp. Englisch.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Publicado por Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: Biblios, Frankfurt am main, HESSE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 107,53

    EUR 9,95 gastos de envío desde Alemania a Estados Unidos de America

    Cantidad disponible: 4 disponibles

    Añadir al carrito

    Condición: New. PRINT ON DEMAND.

  • Uday Kamath (u. a.)

    Publicado por Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Idioma: Inglés

    Librería: preigu, Osnabrück, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 71,30

    EUR 70,00 gastos de envío desde Alemania a Estados Unidos de America

    Cantidad disponible: 5 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Large Language Models: A Deep Dive | Bridging Theory and Practice | Uday Kamath (u. a.) | Buch | xxxiv | Englisch | 2024 | Springer | EAN 9783031656460 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.