Artículos relacionados a Large Language Models: A Deep Dive : Bridging Theory...

Large Language Models: A Deep Dive : Bridging Theory and Practice - Tapa dura

 
9783031656460: Large Language Models: A Deep Dive : Bridging Theory and Practice

Sinopsis

Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs-their intricate architecture, underlying algorithms, and ethical considerations-require thorough exploration, creating a need for a comprehensive book on this subject.

This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.

Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.

This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.

Key Features:

  • Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learning
  • Over 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applications
  • Over 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deployment
  • Over 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycle
  • Nine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical concepts
  • Over 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Uday Kamath has 25 years of experience in analytical development and a Ph.D. in scalable machine learning. His significant contributions span numerous journals, conferences, books, and patents. Notable books include Applied Causal Inference, Explainable Artificial Intelligence, Transformers for Machine Learning, Deep Learning for NLP and Speech RecognitionMastering Java Machine Learning, and Machine Learning: End-to-End Guide for Java Developers. Currently serving as the Chief Analytics Officer for Smarsh, his role encompasses spearheading data science and research in communication AI. He is also an active member of the Board of Advisors for entities, including commercial companies like Falkonry and academic institutions such as the Center for Human-Machine Partnership at GMU.

Kevin Keenan, Ph.D has more than 15 years of experience in the application of statistics, data analytics, and machine learning to real-world data across academia, cybersecurity, and financial services. Within these domains, he has specialized in the rigorous application of the scientific method, especially within scrappy commercial environments, where data quality and completeness are never ideal but from which immense value and insight can still be derived. With 8+ years of experience using NLP to surface human-mediated corporate, legal, and regulatory risk from communications and deep packet network traffic data, Kevin has successfully delivered machine learning applied to unstructured data at huge scales. He is the author of four published scientific papers in the academic field of Evolutionary Genetics, with over 1,400 citations, and is the author and maintainer of the open-source "diveRsity" project for population genetics research in the R statistical programming language.

Sarah Sorenson has spent over 15 years working in the software industry. She is a polyglot programmer, having done full-stack development in Python, Java, C#, and JavaScript at various times. She has spent the past ten years building machine learning capabilities and putting them into operation, primarily in the financial services domain. She has extensive experience in the application of machine learning to fraud detection and, most recently, has specialized in the development and deployment of NLP models for regulatory compliance on large-scale communications data at some of the world’s top banks.

Garrett Somers has been doing data-intensive research for over 10 years. Trained as an astrophysicist, he began his career studying X-ray emissions from distant black holes, before authoring his dissertation on numerical models of the evolving structure, spin, and magnetic fields of stars. He is the first author of eight peer-reviewed astrophysics articles totaling over 400 citations and the contributing author of an additional twenty-seven (over 4,000 citations in total). In 2019, he began a career in data science, specializing in applications of natural language processing to behavioral analysis in large communication corpora.

De la contraportada

Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs—their intricate architecture, underlying algorithms, and ethical considerations—require thorough exploration, creating a need for a comprehensive book on this subject.

This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.

Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.

This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.

    "Sobre este título" puede pertenecer a otra edición de este libro.

    Comprar usado

    Condición: Como Nuevo
    Most items will be dispatched the...
    Ver este artículo

    EUR 9,65 gastos de envío desde Reino Unido a Estados Unidos de America

    Destinos, gastos y plazos de envío

    Comprar nuevo

    Ver este artículo

    EUR 2,25 gastos de envío en Estados Unidos de America

    Destinos, gastos y plazos de envío

    Resultados de la búsqueda para Large Language Models: A Deep Dive : Bridging Theory...

    Imagen del vendedor

    Kamath, Uday
    Publicado por Springer, 2024
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Antiguo o usado Tapa dura

    Librería: WeBuyBooks, Rossendale, LANCS, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Nº de ref. del artículo: wbs4522627645

    Contactar al vendedor

    Comprar usado

    EUR 49,28
    Convertir moneda
    Gastos de envío: EUR 9,65
    De Reino Unido a Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen de archivo

    Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah
    Publicado por Springer, 2024
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Antiguo o usado Tapa dura

    Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48203643

    Contactar al vendedor

    Comprar usado

    EUR 74,23
    Convertir moneda
    Gastos de envío: EUR 2,25
    A Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen de archivo

    Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah
    Publicado por Springer, 2024
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Nuevo Tapa dura

    Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. Nº de ref. del artículo: 48203643-n

    Contactar al vendedor

    Comprar nuevo

    EUR 78,95
    Convertir moneda
    Gastos de envío: EUR 2,25
    A Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen de archivo

    Uday Kamath
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Nuevo Tapa dura

    Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Hardcover. Condición: new. Hardcover. Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMstheir intricate architecture, underlying algorithms, and ethical considerationsrequire thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783031656460

    Contactar al vendedor

    Comprar nuevo

    EUR 81,27
    Convertir moneda
    Gastos de envío: GRATIS
    A Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen de archivo

    Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah
    Publicado por Springer, 2024
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Nuevo Tapa dura

    Librería: Best Price, Torrance, CA, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783031656460

    Contactar al vendedor

    Comprar nuevo

    EUR 74,39
    Convertir moneda
    Gastos de envío: EUR 7,66
    A Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen de archivo

    Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah
    Publicado por Springer, 2024
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Nuevo Tapa dura

    Librería: California Books, Miami, FL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. Nº de ref. del artículo: I-9783031656460

    Contactar al vendedor

    Comprar nuevo

    EUR 90,48
    Convertir moneda
    Gastos de envío: GRATIS
    A Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Imagen de archivo

    Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah
    Publicado por Springer, 2024
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Nuevo Tapa dura

    Librería: Books Puddle, New York, NY, Estados Unidos de America

    Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. 2024th edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26401186160

    Contactar al vendedor

    Comprar nuevo

    EUR 92,86
    Convertir moneda
    Gastos de envío: EUR 3,40
    A Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen de archivo

    Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah
    Publicado por Springer, 2024
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Nuevo Tapa dura

    Librería: Majestic Books, Hounslow, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. Nº de ref. del artículo: 396239535

    Contactar al vendedor

    Comprar nuevo

    EUR 95,49
    Convertir moneda
    Gastos de envío: EUR 7,51
    De Reino Unido a Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen del vendedor

    Uday Kamath
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Nuevo Tapa dura
    Impresión bajo demanda

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs-their intricate architecture, underlying algorithms, and ethical considerations-require thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently 508 pp. Englisch. Nº de ref. del artículo: 9783031656460

    Contactar al vendedor

    Comprar nuevo

    EUR 80,24
    Convertir moneda
    Gastos de envío: EUR 23,00
    De Alemania a Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen de archivo

    Kamath, Uday/ Keenan, Kevin/ Somers, Garrett/ Sorenson, Sarah
    Publicado por Springer-Nature New York Inc, 2024
    ISBN 10: 3031656466 ISBN 13: 9783031656460
    Nuevo Tapa dura

    Librería: Revaluation Books, Exeter, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Hardcover. Condición: Brand New. 400 pages. 9.25x6.10x10.00 inches. In Stock. Nº de ref. del artículo: __3031656466

    Contactar al vendedor

    Comprar nuevo

    EUR 77,37
    Convertir moneda
    Gastos de envío: EUR 28,90
    De Reino Unido a Estados Unidos de America
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Existen otras 7 copia(s) de este libro

    Ver todos los resultados de su búsqueda