EUR 99,30
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: NEW.
Publicado por Springer Nature Switzerland AG, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 111,75
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Springer Nature Switzerland AG, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 116,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
EUR 111,74
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 126,63
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 114,55
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 126,17
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 127,86
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 123,85
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, Springer International Publishing, 2023
ISBN 10: 3030855619 ISBN 13: 9783030855611
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Publicado por Springer International Publishing, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 128,84
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 130,02
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 130,25
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 135,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer, Berlin|Springer International Publishing|Springer, 2021
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 131,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy.This book presents how federated learning helps to understand and learn from user activity .
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 137,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 152,49
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Institution of Engineering and Technology, GB, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 155,28
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. New approaches in federated learning and split learning have the potential to significantly improve ubiquitous intelligence in internet of things (IoT) applications. In split federated learning, the machine learning model is divided into smaller network segments, with each segment trained independently on a server using distributed local client data. The split learning method mitigates two fundamental drawbacks of federated learning: affordability, and privacy and security. When running machine learning computation on devices with limited resources, assigning only a portion of the network to train at the client-side minimizes the processing burden, compared to running a complete network as in federated learning. In addition, neither client nor server has full access to the other, which is more secure. This book reviews cutting edge technologies and advanced research in split federated learning. Coverage includes approaches to realizing and evaluating the effectiveness and advantages of federated learning and split-fed learning, the role of this technology in advancing and securing IoTs, advanced research on emerging AI models for preserving the privacy of the data owned by the clients, and the analysis and development of AI mechanisms in IoT architectures and applications. The use of split federated learning in natural language processing, recommendation systems, healthcare systems, emotion detection, smart agriculture, smart transportation and smart cities is discussed. Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies offers useful insights to the latest developments in the field for researchers, engineers and scientists in academia and industry, who are working in computing, AI, data science and cybersecurity with a focus on federated learning, machine learning and deep learning.
Publicado por Institution of Engineering and Technology, GB, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 162,79
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. New approaches in federated learning and split learning have the potential to significantly improve ubiquitous intelligence in internet of things (IoT) applications. In split federated learning, the machine learning model is divided into smaller network segments, with each segment trained independently on a server using distributed local client data. The split learning method mitigates two fundamental drawbacks of federated learning: affordability, and privacy and security. When running machine learning computation on devices with limited resources, assigning only a portion of the network to train at the client-side minimizes the processing burden, compared to running a complete network as in federated learning. In addition, neither client nor server has full access to the other, which is more secure. This book reviews cutting edge technologies and advanced research in split federated learning. Coverage includes approaches to realizing and evaluating the effectiveness and advantages of federated learning and split-fed learning, the role of this technology in advancing and securing IoTs, advanced research on emerging AI models for preserving the privacy of the data owned by the clients, and the analysis and development of AI mechanisms in IoT architectures and applications. The use of split federated learning in natural language processing, recommendation systems, healthcare systems, emotion detection, smart agriculture, smart transportation and smart cities is discussed. Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies offers useful insights to the latest developments in the field for researchers, engineers and scientists in academia and industry, who are working in computing, AI, data science and cybersecurity with a focus on federated learning, machine learning and deep learning.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 139,67
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Publicado por Springer Nature Switzerland, Springer International Publishing Feb 2022, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users¿ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 158,04
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2022 edition NO-PA16APR2015-KAP.
Publicado por Springer Nature Switzerland AG, CH, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 170,70
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. 2022 ed. This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Publicado por Inst of Engineering & Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 165,75
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 265 pages. 9.25x6.25x0.75 inches. In Stock.
Publicado por Springer Nature Switzerland AG, CH, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 182,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. 2022 ed. This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 120,15
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Institution of Engineering and Technology, GB, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 185,61
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. New approaches in federated learning and split learning have the potential to significantly improve ubiquitous intelligence in internet of things (IoT) applications. In split federated learning, the machine learning model is divided into smaller network segments, with each segment trained independently on a server using distributed local client data. The split learning method mitigates two fundamental drawbacks of federated learning: affordability, and privacy and security. When running machine learning computation on devices with limited resources, assigning only a portion of the network to train at the client-side minimizes the processing burden, compared to running a complete network as in federated learning. In addition, neither client nor server has full access to the other, which is more secure. This book reviews cutting edge technologies and advanced research in split federated learning. Coverage includes approaches to realizing and evaluating the effectiveness and advantages of federated learning and split-fed learning, the role of this technology in advancing and securing IoTs, advanced research on emerging AI models for preserving the privacy of the data owned by the clients, and the analysis and development of AI mechanisms in IoT architectures and applications. The use of split federated learning in natural language processing, recommendation systems, healthcare systems, emotion detection, smart agriculture, smart transportation and smart cities is discussed. Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies offers useful insights to the latest developments in the field for researchers, engineers and scientists in academia and industry, who are working in computing, AI, data science and cybersecurity with a focus on federated learning, machine learning and deep learning.
EUR 176,06
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 265 pages. 9.25x6.10x9.21 inches. In Stock.
Publicado por Institution Of Engineering & Technology Okt 2024, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 173,05
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - This book will review cutting edge technologies and advanced research, which can realize and evaluate the effectiveness and advantages of SplitFed learning for advancing and securing IoTs.