EUR 102,28
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: NEW.
Publicado por Springer Nature Switzerland AG, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 115,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Springer Nature Switzerland AG, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 118,21
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
EUR 115,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 115,82
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 130,43
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 131,69
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 129,50
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, Springer International Publishing, 2023
ISBN 10: 3030855619 ISBN 13: 9783030855611
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Publicado por Springer International Publishing, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 127,11
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 132,14
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 133,41
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer, Berlin|Springer International Publishing|Springer, 2021
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 131,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy.This book presents how federated learning helps to understand and learn from user activity .
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 140,84
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 143,32
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 157,06
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer Nature Switzerland, Springer International Publishing Feb 2022, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users¿ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 148,34
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por The Institution of Engineering and Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 141,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 167,21
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2022 edition NO-PA16APR2015-KAP.
Publicado por Inst of Engineering & Technology, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 170,80
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 265 pages. 9.25x6.25x0.75 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 123,32
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Institution Of Engineering & Technology Okt 2024, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 178,11
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - This book will review cutting edge technologies and advanced research, which can realize and evaluate the effectiveness and advantages of SplitFed learning for advancing and securing IoTs.
EUR 181,42
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 265 pages. 9.25x6.10x9.21 inches. In Stock.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 183,42
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 273 pages. 9.25x6.10x0.69 inches. In Stock.
Publicado por Institution of Engineering and Technology, Stevenage, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 165,18
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. New approaches in federated learning and split learning have the potential to significantly improve ubiquitous intelligence in internet of things (IoT) applications. In split federated learning, the machine learning model is divided into smaller network segments, with each segment trained independently on a server using distributed local client data.The split learning method mitigates two fundamental drawbacks of federated learning: affordability, and privacy and security. When running machine learning computation on devices with limited resources, assigning only a portion of the network to train at the client-side minimizes the processing burden, compared to running a complete network as in federated learning. In addition, neither client nor server has full access to the other, which is more secure.This book reviews cutting edge technologies and advanced research in split federated learning. Coverage includes approaches to realizing and evaluating the effectiveness and advantages of federated learning and split-fed learning, the role of this technology in advancing and securing IoTs, advanced research on emerging AI models for preserving the privacy of the data owned by the clients, and the analysis and development of AI mechanisms in IoT architectures and applications. The use of split federated learning in natural language processing, recommendation systems, healthcare systems, emotion detection, smart agriculture, smart transportation and smart cities is discussed.Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies offers useful insights to the latest developments in the field for researchers, engineers and scientists in academia and industry, who are working in computing, AI, data science and cybersecurity with a focus on federated learning, machine learning and deep learning. This book will review cutting edge technologies and advanced research, which can realize and evaluate the effectiveness and advantages of SplitFed learning for advancing and securing IoTs. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Institution of Engineering and Technology, Stevenage, 2024
ISBN 10: 1839539453 ISBN 13: 9781839539459
Idioma: Inglés
Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America
EUR 141,42
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. New approaches in federated learning and split learning have the potential to significantly improve ubiquitous intelligence in internet of things (IoT) applications. In split federated learning, the machine learning model is divided into smaller network segments, with each segment trained independently on a server using distributed local client data.The split learning method mitigates two fundamental drawbacks of federated learning: affordability, and privacy and security. When running machine learning computation on devices with limited resources, assigning only a portion of the network to train at the client-side minimizes the processing burden, compared to running a complete network as in federated learning. In addition, neither client nor server has full access to the other, which is more secure.This book reviews cutting edge technologies and advanced research in split federated learning. Coverage includes approaches to realizing and evaluating the effectiveness and advantages of federated learning and split-fed learning, the role of this technology in advancing and securing IoTs, advanced research on emerging AI models for preserving the privacy of the data owned by the clients, and the analysis and development of AI mechanisms in IoT architectures and applications. The use of split federated learning in natural language processing, recommendation systems, healthcare systems, emotion detection, smart agriculture, smart transportation and smart cities is discussed.Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies offers useful insights to the latest developments in the field for researchers, engineers and scientists in academia and industry, who are working in computing, AI, data science and cybersecurity with a focus on federated learning, machine learning and deep learning. This book will review cutting edge technologies and advanced research, which can realize and evaluate the effectiveness and advantages of SplitFed learning for advancing and securing IoTs. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Springer, Berlin|Springer International Publishing|Springer, 2023
ISBN 10: 3030855619 ISBN 13: 9783030855611
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 110,71
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized mode.
Publicado por Springer International Publishing Feb 2023, 2023
ISBN 10: 3030855619 ISBN 13: 9783030855611
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 128,39
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering. 276 pp. Englisch.