Librería: Studibuch, Stuttgart, Alemania
EUR 14,24
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Befriedigend. Seiten; 9783528164331.4 Gewicht in Gramm: 1.
Librería: Buchmarie, Darmstadt, Alemania
EUR 43,37
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Cover Ecke leicht beschädigt.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 60,03
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Jackson Street Booksellers, Omaha, NE, Estados Unidos de America
Original o primera edición
EUR 31,11
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Fine. No Jacket. 1st Edition. Fine in Hardcover. 236pp 8vo.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 60,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza tion of Dirichlet's L-functions with a generalization of class field the ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory.
Publicado por Vieweg+Teubner Verlag, The Netherlands, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Inglés
EUR 31,11
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. Estado de la sobrecubierta: No Dust Jacket. 236 pp. Tightly bound. Tip of top right corner front board with light bump. Text is free of markings. No ownership markings. No dust jacket. Printed boards.
Publicado por Vieweg+Teubner Verlag 2012-04-24, 2012
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,43
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 72,33
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 76,97
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 252.
Publicado por Vieweg+Teubner Verlag 2013-10, 2013
ISBN 10: 366309507X ISBN 13: 9783663095071
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 68,71
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Publicado por Vieweg+Teubner Verlag, Vieweg+Teubner Verlag, 2013
ISBN 10: 366309507X ISBN 13: 9783663095071
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 74,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind.
Publicado por Vieweg+Teubner Verlag, Vieweg+Teubner Verlag Jan 1992, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza tion of Dirichlet's L-functions with a generalization of class field the ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 252 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 103,95
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 256 2nd Edition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,93
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 112,54
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2nd edition. 256 pages. 9.69x6.69x0.63 inches. In Stock.
Publicado por Germany: Friedrick Vieweg & Son, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Inglés
Librería: Bingo Books 2, Vancouver, WA, Estados Unidos de America
Original o primera edición
EUR 97,78
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Near Fine. 1st Edition. hardback book in near fine condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 75,91
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 124,05
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por Friedrich Vieweg & Sohn Verlagsgesellschaft mbH,, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Alemán
Librería: Die Wortfreunde - Antiquariat Wirthwein Matthias Wirthwein, Mannheim, Alemania
EUR 98,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoGebundene Ausgabe. 236 Seiten 1992. Einband leicht berieben, sonst sehr gut. Sprache: Deutsch.
Librería: Librairie Chat, Beijing, China
EUR 102,22
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Fine. Size: 22.5x15.5cm Number of books: 1 book.
Publicado por Springer Vieweg Jan 1992, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza tion of Dirichlet's L-functions with a generalization of class field the ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory. 240 pp. Deutsch.
Librería: moluna, Greven, Alemania
EUR 48,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 The zero-dimensional case: number fields.- 1.1 Class Numbers.- 1.2 Dirichlet L-Functions.- 1.3 The Class Number Formula.- 1.4 Abelian Number Fields.- 1.5 Non-abelian Number Fields and Artin L-Functions.- 2 The one-dimensional case: elliptic curves.- 2.1 G.
Librería: moluna, Greven, Alemania
EUR 64,33
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. Wilfried Hulsbergen is teaching at the KMA, Breda,Niederlande.In the early 1980 s, stimulated by work of Bloch and Deligne, Beilinson stated some intriguing conjectures on special values of L-functions of algebraic varieties defined over number fiel.
Publicado por Vieweg+Teubner, Vieweg+Teubner Verlag Okt 2013, 2013
ISBN 10: 366309507X ISBN 13: 9783663095071
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 74,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind. 246 pp. Englisch.
Publicado por Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 79,76
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 252 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Publicado por Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 81,13
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 252.
Publicado por Vieweg+Teubner Verlag, Vieweg+Teubner Verlag Okt 2013, 2013
ISBN 10: 366309507X ISBN 13: 9783663095071
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 74,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 256 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 108,68
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 256 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 110,08
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 256.