In the early 1980's, stimulated by work of Bloch and Deligne, Beilinson stated some intriguing conjectures on special values of L-functions of algebraic varieties defined over number fields. Roughly speaking these special values are determinants of higher regulator maps relating the higher algebraic K-groups of the variety to its cohomology. In this respect, higher algebraic K-theory is believed to provide a universal, motivic cohomology theory and the regulator maps are determined by Chern characters from higher algebraic K-theory to any other suitable cohomology theory. Also, Beilinson stated a generalized Hodge conjecture. This book provides an introduction to and a survey of Beilinson's conjectures and an introduction to Jannsen's work with respect to the Hodge and Tate conjectures. It addresses mathematicians with some knowledge of algebraic number theory, elliptic curves and algebraic K-theory.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Wilfried Hulsbergen is teaching at the KMA, Breda,Niederlande.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,63 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 5,14 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783663095071_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. Wilfried Hulsbergen is teaching at the KMA, Breda,Niederlande.In the early 1980 s, stimulated by work of Bloch and Deligne, Beilinson stated some intriguing conjectures on special values of L-functions of algebraic varieties defined over number fiel. Nº de ref. del artículo: 5230911
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783663095071
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind. 246 pp. Englisch. Nº de ref. del artículo: 9783663095071
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind. Nº de ref. del artículo: 9783663095071
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 256 pp. Englisch. Nº de ref. del artículo: 9783663095071
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 256 2nd Edition. Nº de ref. del artículo: 26142295493
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 256 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 135069210
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 2nd edition. 256 pages. 9.69x6.69x0.63 inches. In Stock. Nº de ref. del artículo: x-366309507X
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 256. Nº de ref. del artículo: 18142295503
Cantidad disponible: 4 disponibles