Artículos relacionados a Evolutionary Data Clustering: Algorithms and Applications...

Evolutionary Data Clustering: Algorithms and Applications (Algorithms for Intelligent Systems) - Tapa dura

 
9789813341906: Evolutionary Data Clustering: Algorithms and Applications (Algorithms for Intelligent Systems)

Sinopsis

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Ibrahim Aljarah is an associate professor of BIG Data Mining and Computational Intelligence at the University of Jordan-Department of Information Technology, Jordan. Currently, he is the Director of the Open Educational Resources and Blended Learning Center at The University of Jordan. He obtained his PhD in computer science from the North Dakota State University, USA, in 2014. He also obtained the master degree in computer science and information systems from the Jordan University of Science and Technology – Jordan in 2006. He obtained the bachelor degree in Computer Science from Yarmouk University - Jordan, 2003. He participated in many conferences in the field of data mining, machine learning, and Big data such as CEC, GECCO, NTIT, CSIT, IEEE NABIC, CASON, and BIGDATA Congress. Furthermore, he contributed in many projects in USA such as Vehicle Class Detection System (VCDS), Pavement Analysis Via Vehicle Electronic Telemetry (PAVVET), and Farm Cloud Storage System(CSS) projects. He has published more than 60 papers in refereed inter-national conferences and journals. His research focuses on Data Mining, Data Science, Machine Learning, Opinion Mining, Sentiment Analysis, Big Data, MapReduce, Hadoop, Swarm intelligence, Evolutionary Computation, and large-scale distributed algorithms. 

Hossam Faris is a Professor in the Information Technology Department at King Abdullah II School for Information Technology at The University of Jordan, Jordan. Hossam Faris received his B.A. and M.Sc. degrees in computer science from the Yarmouk University and Al-Balqa’ Applied University in 2004 and 2008, respectively, in Jordan. He was awarded a full-time competition-based scholarship from the Italian Ministry of Education and Research to peruse his Ph.D. degrees in e-Business at the University of Salento, Italy, where he obtained his Ph.D. degree in 2011. In 2016, he worked as a postdoctoral researcher with the GeNeura team at the Information and Communication Technologies Research Center (CITIC), University of Granada, Spain. His research interests include applied computational intelligence, evolutionary computation, knowledge systems, data mining, semantic web, and ontologies.

Seyedali Mirjalili is an Associate Professor and the director of the Centre for Artificial Intelligence Research and Optimization at Torrens University Australia. He is internationally recognized for his advances in Swarm Intelligence and Optimization, including the first set of algorithms from a synthetic intelligence standpoint - a radical departure from how natural systems are typically understood - and a systematic design framework to reliably benchmark, evaluate, and propose computationally cheap robust optimization algorithms. He has published over 200 publications with over 20,000 citations and is in the list of 1% highly-cited researchers by Web of Science. Seyedali is a senior member of IEEE and an associate editor of severaljournals including Neurocomputing, Applied Soft Computing, Advances in Engineering Software, Applied Intelligence, and IEEE Access. His research interests include Robust Optimization, Engineering Optimization, Multi-objective Optimization, Swarm Intelligence, Evolutionary Algorithms, Machine Learning, and Artificial Neural Networks. 

De la contraportada

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789813341937: Evolutionary Data Clustering: Algorithms and Applications (Algorithms for Intelligent Systems)

Edición Destacada

ISBN 10:  9813341939 ISBN 13:  9789813341937
Editorial: Springer, 2022
Tapa blanda

Resultados de la búsqueda para Evolutionary Data Clustering: Algorithms and Applications...

Imagen del vendedor

Aljarah, Ibrahim|Faris, Hossam|Mirjalili, Seyedali
Publicado por Springer Nature Singapore, 2021
ISBN 10: 9813341904 ISBN 13: 9789813341906
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides an in-depth analysis of the current evolutionary clustering techniquesFeatures a range of proven and recent nature-inspired algorithms used to data clusteringServes as a reference resource for researchers and academicians. Nº de ref. del artículo: 418570362

Contactar al vendedor

Comprar nuevo

EUR 162,51
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2021
ISBN 10: 9813341904 ISBN 13: 9789813341906
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789813341906_new

Contactar al vendedor

Comprar nuevo

EUR 190,49
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ibrahim Aljarah
ISBN 10: 9813341904 ISBN 13: 9789813341906
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering indiverse fields such as image segmentation, medical applications, and pavement infrastructure asset management. 260 pp. Englisch. Nº de ref. del artículo: 9789813341906

Contactar al vendedor

Comprar nuevo

EUR 192,59
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ibrahim Aljarah
ISBN 10: 9813341904 ISBN 13: 9789813341906
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering indiverse fields such as image segmentation, medical applications, and pavement infrastructure asset management. Nº de ref. del artículo: 9789813341906

Contactar al vendedor

Comprar nuevo

EUR 196,27
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ibrahim Aljarah
ISBN 10: 9813341904 ISBN 13: 9789813341906
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering indiverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch. Nº de ref. del artículo: 9789813341906

Contactar al vendedor

Comprar nuevo

EUR 192,59
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2021
ISBN 10: 9813341904 ISBN 13: 9789813341906
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789813341906

Contactar al vendedor

Comprar nuevo

EUR 228,08
Convertir moneda
Gastos de envío: EUR 6,87
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2021
ISBN 10: 9813341904 ISBN 13: 9789813341906
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070097114

Contactar al vendedor

Comprar nuevo

EUR 185,24
Convertir moneda
Gastos de envío: EUR 64,37
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Aljarah, Ibrahim (Editor)/ Faris, Hossam (Editor)/ Mirjalili, Seyedali (Editor)
Publicado por Springer Nature, 2021
ISBN 10: 9813341904 ISBN 13: 9789813341906
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 260 pages. 9.25x6.10x9.21 inches. In Stock. Nº de ref. del artículo: x-9813341904

Contactar al vendedor

Comprar nuevo

EUR 273,53
Convertir moneda
Gastos de envío: EUR 11,56
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito