Bachelorarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,3, Technische Universität München (Zentrum Mathematik), Sprache: Deutsch, Abstract: Die Finite-Elemente-Methode hat ihren Ursprung in den 1950er Jahren, als Ingenieure erstmals die Methoden der Analysis mit der Variationsrechnung der Kontinuumsmechanik kombinierten. Mitte der 1960er erschienen unabhängig voneinander mehrere Publikationen, die sich mit der Konstruktion und Analysis von Finite-Differenzen-Schemata für elliptische Probleme mithilfe von Variationsmethoden beschäftigten. Zu nennen sind hier Céa, Demjanovic, Feng, Friedrichs und Keller und Oganesjan und Ruchovets. Aus dem Studium stetiger Approximationsfunktionen entwickelte sich schließlich die Theorie der Finiten Elemente. Allgemeines zur Mathematik der Finiten Elemente für elliptische Probleme findet sich z.B. bei Babuska und Aziz, Strang und Fix, Ciarlet sowie Brenner und Scott. Die Entwicklung einer entsprechenden Methode für parabolische Probleme begann um 1970, als die Finite-Differenzen-Analysis für derartige Probleme bereits weit fortgeschritten war. Diese Bachelorarbeit ist das Ergebnis meiner Independent Studies des akademischen Jahres 2014 am Lehrstuhl für Optimale Steuerung der TU München. Nach dieser kurzen Einleitung werde ich einen Einblick in die zeitliche Galerkin-Diskretisierungsmethode parabolischer Differentialgleichungen sowie Theorie und Analysis linearer Probleme geben. Das Hauptaugenmerk dieser Arbeit liegt allerdings auf effzienten numerischen Realisierungen des titelgebenden Verfahrens, die im Anschluss an die Theorie präsentiert werden. Für weitergehende Fehlerabschätzungen und Stabilitätsaussagen der Galerkin-Verfahren für parabolische Probleme sei auf Thomée verwiesen. Als Standardwerke für die mathematische Theorie elliptischer und parabolischer Differentialgleichungen möchte ich noch Evans, sowie Lions und Magenes und Friedman nennen.
"Sinopsis" puede pertenecer a otra edición de este libro.
Bachelorarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,3, Technische Universität München (Zentrum Mathematik), Sprache: Deutsch, Abstract: Die Finite-Elemente-Methode hat ihren Ursprung in den 1950er Jahren, als Ingenieure erstmals die Methoden der Analysis mit der Variationsrechnung der Kontinuumsmechanik kombinierten. Mitte der 1960er erschienen unabhängig voneinander mehrere Publikationen, die sich mit der Konstruktion und Analysis von Finite-Differenzen-Schemata für elliptische Probleme mithilfe von Variationsmethoden beschäftigten. Zu nennen sind hier Céa, Demjanovic, Feng, Friedrichs und Keller und Oganesjan und Ruchovets. Aus dem Studium stetiger Approximationsfunktionen entwickelte sich schließlich die Theorie der Finiten Elemente. Allgemeines zur Mathematik der Finiten Elemente für elliptische Probleme findet sich z.B. bei Babuska und Aziz, Strang und Fix, Ciarlet sowie Brenner und Scott. Die Entwicklung einer entsprechenden Methode für parabolische Probleme begann um 1970, als die Finite-Differenzen-Analysis für derartige Probleme bereits weit fortgeschritten war. Diese Bachelorarbeit ist das Ergebnis meiner Independent Studies des akademischen Jahres 2014 am Lehrstuhl für Optimale Steuerung der TU München. Nach dieser kurzen Einleitung werde ich einen Einblick in die zeitliche Galerkin-Diskretisierungsmethode parabolischer Differentialgleichungen sowie Theorie und Analysis linearer Probleme geben. Das Hauptaugenmerk dieser Arbeit liegt allerdings auf effzienten numerischen Realisierungen des titelgebenden Verfahrens, die im Anschluss an die Theorie präsentiert werden. Für weitergehende Fehlerabschätzungen und Stabilitätsaussagen der Galerkin-Verfahren für parabolische Probleme sei auf Thomée verwiesen. Als Standardwerke für die mathematische Theorie elliptischer und parabolischer Differentialgleichungen möchte ich noch Evans, sowie Lions und Magenes und Friedman nennen.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Bachelorarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,3, Technische Universität München (Zentrum Mathematik), Sprache: Deutsch, Abstract: Die Finite-Elemente-Methode hat ihren Ursprung in den 1950er Jahren, als Ingenieure erstmals die Methoden der Analysis mit der Variationsrechnung der Kontinuumsmechanikkombinierten. Mitte der 1960er erschienen unabhängig voneinander mehrere Publikationen, die sich mit der Konstruktion und Analysis von Finite-Differenzen-Schemata fürelliptische Probleme mithilfe von Variationsmethoden beschäftigten. Zu nennen sind hier Céa, Demjanovic, Feng, Friedrichs und Keller und Oganesjan und Ruchovets. Aus dem Studium stetiger Approximationsfunktionen entwickelte sich schließlich die Theorie der Finiten Elemente. Allgemeines zur Mathematik der Finiten Elemente für elliptische Probleme findet sich z.B. bei Babuska und Aziz, Strang und Fix, Ciarlet sowie Brenner und Scott.Die Entwicklung einer entsprechenden Methode fürparabolische Probleme begann um 1970, als die Finite-Differenzen-Analysis für derartige Probleme bereits weit fortgeschritten war. Diese Bachelorarbeit ist das Ergebnis meiner Independent Studies des akademischen Jahres2014 am Lehrstuhl für Optimale Steuerung der TU München. Nach dieser kurzen Einleitung werde ich einen Einblick in die zeitliche Galerkin-Diskretisierungsmethode parabolischerDifferentialgleichungen sowie Theorie und Analysis linearer Probleme geben.Das Hauptaugenmerk dieser Arbeit liegt allerdings auf effzienten numerischen Realisierungen des titelgebenden Verfahrens, die im Anschluss an die Theorie präsentiert werden.Für weitergehende Fehlerabschätzungen und Stabilitätsaussagen der Galerkin-Verfahren für parabolische Probleme sei auf Thomée verwiesen.Als Standardwerke für die mathematische Theorie elliptischer und parabolischer Differentialgleichungen möchte ich noch Evans, sowie Lions und Magenes und Friedman nennen. 68 pp. Deutsch. Nº de ref. del artículo: 9783656830573
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Bachelorarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,3, Technische Universität München (Zentrum Mathematik), Sprache: Deutsch, Abstract: Die Finite-Elemente-Methode hat ihren Ursprung in den 1950er Jahren, als Ingenieure erstmals die Methoden der Analysis mit der Variationsrechnung der Kontinuumsmechanikkombinierten. Mitte der 1960er erschienen unabhängig voneinander mehrere Publikationen, die sich mit der Konstruktion und Analysis von Finite-Differenzen-Schemata fürelliptische Probleme mithilfe von Variationsmethoden beschäftigten. Zu nennen sind hier Céa, Demjanovic, Feng, Friedrichs und Keller und Oganesjan und Ruchovets. Aus dem Studium stetiger Approximationsfunktionen entwickelte sich schließlich die Theorie der Finiten Elemente. Allgemeines zur Mathematik der Finiten Elemente für elliptische Probleme findet sich z.B. bei Babuska und Aziz, Strang und Fix, Ciarlet sowie Brenner und Scott.Die Entwicklung einer entsprechenden Methode fürparabolische Probleme begann um 1970, als die Finite-Differenzen-Analysis für derartige Probleme bereits weit fortgeschritten war. Diese Bachelorarbeit ist das Ergebnis meiner Independent Studies des akademischen Jahres2014 am Lehrstuhl für Optimale Steuerung der TU München. Nach dieser kurzen Einleitung werde ich einen Einblick in die zeitliche Galerkin-Diskretisierungsmethode parabolischerDifferentialgleichungen sowie Theorie und Analysis linearer Probleme geben.Das Hauptaugenmerk dieser Arbeit liegt allerdings auf effzienten numerischen Realisierungen des titelgebenden Verfahrens, die im Anschluss an die Theorie präsentiert werden.Für weitergehende Fehlerabschätzungen und Stabilitätsaussagen der Galerkin-Verfahren für parabolische Probleme sei auf Thomée verwiesen.Als Standardwerke für die mathematische Theorie elliptischer und parabolischer Differentialgleichungen möchte ich noch Evans, sowie Lions und Magenes und Friedman nennen. Nº de ref. del artículo: 9783656830573
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783656830573
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26359055342
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 353435697
Cantidad disponible: 4 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Petrov-Galerkin-Finite-Elemente-Methoden zur Zeitdiskretisierung parabolischer partieller Differentialgleichungen | Christoph Weber | Taschenbuch | Aus der Reihe: [.] stipendiaten-wissen | Paperback | 68 S. | Deutsch | 2014 | GRIN Verlag | EAN 9783656830573 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Nº de ref. del artículo: 105028421
Cantidad disponible: 5 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18359055332
Cantidad disponible: 4 disponibles