This proceedings of a NATO Advanced Research Workshop (ARW) presents latest interdisciplinary research results on spatial data structures, mapping systems, cartographic feature extraction from imagery, mobile robot navigation, and operational and researchneeds in mapping. The emphasis is on specific techniques for map production and use.
"Sinopsis" puede pertenecer a otra edición de este libro.
The successful implementation of applications in spatial reasoning requires paying attention to the representation of spatial data. In particular, an integrated and uniform treatment of different spatial features is necessary in order to enable the reasoning to proceed quickly. Currently, the most prevalent features are points, rectangles, lines, regions, surfaces, and volumes. As an example of a reasoning task consider a query of the form "find all cities with population in excess of 5,000 in wheat growing regions within 10 miles of the Mississippi River. " Note that this query is quite complex. It requires- processing a line map (for the river), creating a corridor or buffer (to find the area within 10 miles of the river), a region map (for the wheat), and a point map (for the cities). Spatial reasoning is eased by spatially sorting the data (i. e. , a spatial index). In this paper we show how hierarchical data structures can be used to facilitate this process. They are based on the principle of recursive decomposition (similar to divide and conquer methods). In essence, they are used primarily as devices to sort data of more than one dimension and different spatial types. The term quadtree is often used to describe this class of data structures. In this paper, we focus on recent developments in the use of quadtree methods. We concentrate primarily on region data. For a more extensive treatment of this subject, see [SameS4a, SameSSa, SameSSb, SameSSc, SameSga, SameSgbj.
This volume presents the proceedings of a NATO Advanced Research Workshop (ARW) held in Denmark in August 1989. It results from the activities of the NATO Special Programme on Sensory Systems for Robotic Control, running since 1983 under the auspices of the NATO Science Committee. The volume collects up-to-date interdisciplinary research findings of high practical value, about spatial- data structures, mapping systems, cartographic feature extraction from imagery, mobile robot navigation, and operational and research needs in mapping. As the demand for mapping products and services is growing very rapidly, but the transition to digital map production is still slow, the emphasis in this volume is on specific techniques for map production and their use in various navigation tasks. The key disciplines offering new contributions here are image processing, computational geometry, artificial intelligence, hypermedia, geography, sensor fusion, route planning, and computational environments.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,91 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of the NATO Advanced Research Workshop on Mapping and Spatial Modelling for Navigation, held in Fano, Denmark, August 21-25, 1989The successful implementation of applications in spatial reasoning requires paying attention to the representati. Nº de ref. del artículo: 5072039
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The successful implementation of applications in spatial reasoning requires paying attention to the representation of spatial data. In particular, an integrated and uniform treatment of different spatial features is necessary in order to enable the reasoning to proceed quickly. Currently, the most prevalent features are points, rectangles, lines, regions, surfaces, and volumes. As an example of a reasoning task consider a query of the form 'find all cities with population in excess of 5,000 in wheat growing regions within 10 miles of the Mississippi River. ' Note that this query is quite complex. It requires- processing a line map (for the river), creating a corridor or buffer (to find the area within 10 miles of the river), a region map (for the wheat), and a point map (for the cities). Spatial reasoning is eased by spatially sorting the data (i. e. , a spatial index). In this paper we show how hierarchical data structures can be used to facilitate this process. They are based on the principle of recursive decomposition (similar to divide and conquer methods). In essence, they are used primarily as devices to sort data of more than one dimension and different spatial types. The term quadtree is often used to describe this class of data structures. In this paper, we focus on recent developments in the use of quadtree methods. We concentrate primarily on region data. For a more extensive treatment of this subject, see [SameS4a, SameSSa, SameSSb, SameSSc, SameSga, SameSgbj. Nº de ref. del artículo: 9783642842177
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783642842177_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The successful implementation of applications in spatial reasoning requires paying attention to the representation of spatial data. In particular, an integrated and uniform treatment of different spatial features is necessary in order to enable the reasoning to proceed quickly. Currently, the most prevalent features are points, rectangles, lines, regions, surfaces, and volumes. As an example of a reasoning task consider a query of the form 'find all cities with population in excess of 5,000 in wheat growing regions within 10 miles of the Mississippi River. ' Note that this query is quite complex. It requires- processing a line map (for the river), creating a corridor or buffer (to find the area within 10 miles of the river), a region map (for the wheat), and a point map (for the cities). Spatial reasoning is eased by spatially sorting the data (i. e. , a spatial index). In this paper we show how hierarchical data structures can be used to facilitate this process. They are based on the principle of recursive decomposition (similar to divide and conquer methods). In essence, they are used primarily as devices to sort data of more than one dimension and different spatial types. The term quadtree is often used to describe this class of data structures. In this paper, we focus on recent developments in the use of quadtree methods. We concentrate primarily on region data. For a more extensive treatment of this subject, see [SameS4a, SameSSa, SameSSb, SameSSc, SameSga, SameSgbj. 372 pp. Englisch. Nº de ref. del artículo: 9783642842177
Cantidad disponible: 2 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783642842177
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The successful implementation of applications in spatial reasoning requires paying attention to the representation of spatial data. In particular, an integrated and uniform treatment of different spatial features is necessary in order to enable the reasoning to proceed quickly. Currently, the most prevalent features are points, rectangles, lines, regions, surfaces, and volumes. As an example of a reasoning task consider a query of the form 'find all cities with population in excess of 5,000 in wheat growing regions within 10 miles of the Mississippi River. ' Note that this query is quite complex. It requires- processing a line map (for the river), creating a corridor or buffer (to find the area within 10 miles of the river), a region map (for the wheat), and a point map (for the cities). Spatial reasoning is eased by spatially sorting the data (i. e. , a spatial index). In this paper we show how hierarchical data structures can be used to facilitate this process. They are based on the principle of recursive decomposition (similar to divide and conquer methods). In essence, they are used primarily as devices to sort data of more than one dimension and different spatial types. The term quadtree is often used to describe this class of data structures. In this paper, we focus on recent developments in the use of quadtree methods. We concentrate primarily on region data. For a more extensive treatment of this subject, see [SameS4a, SameSSa, SameSSb, SameSSc, SameSga, SameSgbj.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 372 pp. Englisch. Nº de ref. del artículo: 9783642842177
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. viii + 357. Nº de ref. del artículo: 2654513049
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. viii + 357 155 Figures. Nº de ref. del artículo: 55079494
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. viii + 357. Nº de ref. del artículo: 1854513043
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 365 pages. 9.40x6.80x0.90 inches. In Stock. Nº de ref. del artículo: x-3642842178
Cantidad disponible: 2 disponibles