Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.
Key Features:
"Sinopsis" puede pertenecer a otra edición de este libro.
Chengliang Yang, Department of Computer Science, University of Florida Chris Delcher, Institute of Child Health Policy, University of Florida Elizabeth Shenkman, Institute of Child Health Policy, University of Florida Sanjay Ranka, Department of Computer Science, University of Florida.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 105,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 17,87 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-TNF-9780367342906
Cantidad disponible: 10 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.Key Features:Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codesProvides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizersPresents descriptive data driven methods for the high utilizer populationIdentifies a best-fitting linear and tree-based regression model to account for patients acute and chronic condition loads and demographic characteristics This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges posed by this problem. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780367342906
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 390536978
Cantidad disponible: 3 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 35591977/2
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26389062861
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Chengliang Yang, Department of Computer Science, University of Florida Chris Delcher, Institute of Child Health Policy, University of Florida Elizabeth Shenkman, Institute of Child Health Policy, University of Florida Sanjay Ranka, Depar. Nº de ref. del artículo: 594574941
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18389062855
Cantidad disponible: 3 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 419. Nº de ref. del artículo: B9780367342906
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 107 pages. 10.00x7.25x0.50 inches. In Stock. Nº de ref. del artículo: __0367342901
Cantidad disponible: 1 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condición: new. Hardcover. Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.Key Features:Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codesProvides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizersPresents descriptive data driven methods for the high utilizer populationIdentifies a best-fitting linear and tree-based regression model to account for patients acute and chronic condition loads and demographic characteristics This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges posed by this problem. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780367342906
Cantidad disponible: 1 disponibles