Librería: Buchpark, Trebbin, Alemania
EUR 122,66
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Seiten: 108 | Sprache: Englisch | Produktart: Bücher.
Publicado por Chapman and Hall/CRC 2019-10-10, 2019
ISBN 10: 0367342901 ISBN 13: 9780367342906
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 175,54
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoHardcover. Condición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 207,82
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 222,00
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 223,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 107 pages. 10.00x7.25x0.50 inches. In Stock.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 235,18
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 419.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 233,69
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Publicado por Taylor & Francis Ltd, London, 2019
ISBN 10: 0367342901 ISBN 13: 9780367342906
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 200,23
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.Key Features:Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codesProvides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizersPresents descriptive data driven methods for the high utilizer populationIdentifies a best-fitting linear and tree-based regression model to account for patients acute and chronic condition loads and demographic characteristics This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges posed by this problem. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Taylor & Francis Ltd, London, 2019
ISBN 10: 0367342901 ISBN 13: 9780367342906
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 283,12
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.Key Features:Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codesProvides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizersPresents descriptive data driven methods for the high utilizer populationIdentifies a best-fitting linear and tree-based regression model to account for patients acute and chronic condition loads and demographic characteristics This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges posed by this problem. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: moluna, Greven, Alemania
EUR 179,01
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Chengliang Yang, Department of Computer Science, University of Florida Chris Delcher, Institute of Child Health Policy, University of Florida Elizabeth Shenkman, Institute of Child Health Policy, University of Florida Sanjay Ranka, Depar.