Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: PlumCircle, West Mifflin, PA, Estados Unidos de America
EUR 20,12
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Fine. Publisher overstock. May have remainder mark / minimal shelfwear. 99% of orders arrive in 4-10 days. Discounted shipping on multiple books.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: PlumCircle, West Mifflin, PA, Estados Unidos de America
EUR 28,00
Convertir monedaCantidad disponible: 6 disponibles
Añadir al carritopaperback. Condición: New. New item in gift quality condition. 99% of orders arrive in 4-10 days. Discounted shipping on multiple books.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
EUR 42,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 70,72
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
EUR 71,75
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 79,71
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 75,22
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 85,54
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 91,21
Convertir monedaCantidad disponible: 6 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 96,32
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback. Condición: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 84,85
Convertir monedaCantidad disponible: 9 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 526.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 81,29
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 85,86
Convertir monedaCantidad disponible: 8 disponibles
Añadir al carritoCondición: New. In.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 93,45
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 320.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 102,69
Convertir monedaCantidad disponible: 14 disponibles
Añadir al carritoPaperback. Condición: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 103,54
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 320.
Publicado por Princeton University Press, New Jersey, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 110,43
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting -adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case wher Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 105,90
Convertir monedaCantidad disponible: 14 disponibles
Añadir al carritoPaperback. Condición: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 148,17
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press Feb 2019, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 93,07
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware - A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ¿-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 145,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 90,54
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback. Condición: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 172,39
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 172,48
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 182,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. In.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 219,35
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Publicado por Princeton University Press Feb 2019, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 191,25
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ¿-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Publicado por Princeton University Press, US, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 224,58
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.