Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 28,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 27,26
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 182.
EUR 25,81
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 182 5 Illus.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 32,92
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 35,51
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 33,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 38,00
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 39,05
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts.Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some more technical proofs and background material omitted. Part 2 gives an overview of the asymptotic properties of solutions to hyperbolic equations and systems with time-dependent coefficients. First, an overview of known results is given for general scalar hyperbolic equations of higher order with constant coefficients. Then strongly hyperbolic systems with time-dependent coefficients are considered. A feature of the described approach is that oscillations in coefficients are allowed. Propagators for the Cauchy problems are constructed as oscillatory integrals by working in appropriate time-frequency symbol classes. A number of examples is considered and the sharpness of results is discussed. An exemplary treatment of dissipative terms shows how effective lower order terms can change asymptotic properties and thus complements the exposition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 32,18
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Birkh�user 2014-08-05, 2014
ISBN 10: 3034808399 ISBN 13: 9783034808392
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 29,35
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 30,54
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 35,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Antiquariat Thomas Nonnenmacher, Freiburg, Alemania
EUR 16,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoftcover/Paperback. Condición: Gut. 170 Seiten. Mängelstempel auf unterem Schnitt. Sehr gut erhalten. 9783034808392 Sprache: Englisch Gewicht in Gramm: 1200 (Advanced Courses in Mathematics - CRM Barcelona.).
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 52,14
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. This book features a concise introduction to variable Lebesgue spaces. It includes an easy-to-read introduction to the classical problems as well as to recent developments in the asymptotic theory for hyperbolic equations. Editor(s): Tikhonov, Sergey. Series: Advanced Courses in Mathematics - CRM Barcelona. Num Pages: 170 pages, 5 black & white illustrations, biography. BIC Classification: PBKL. Category: (P) Professional & Vocational. Dimension: 170 x 241 x 8. Weight in Grams: 300. . 2014. 2014th Edition. Paperback. . . . .
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 64,22
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. This book features a concise introduction to variable Lebesgue spaces. It includes an easy-to-read introduction to the classical problems as well as to recent developments in the asymptotic theory for hyperbolic equations. Editor(s): Tikhonov, Sergey. Series: Advanced Courses in Mathematics - CRM Barcelona. Num Pages: 170 pages, 5 black & white illustrations, biography. BIC Classification: PBKL. Category: (P) Professional & Vocational. Dimension: 170 x 241 x 8. Weight in Grams: 300. . 2014. 2014th Edition. Paperback. . . . . Books ship from the US and Ireland.
EUR 44,25
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 35,80
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts.Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some more technical proofs and background material omitted. Part 2 gives an overview of the asymptotic properties of solutions to hyperbolic equations and systems with time-dependent coefficients. First, an overview of known results is given for general scalar hyperbolic equations of higher order with constant coefficients. Then strongly hyperbolic systems with time-dependent coefficients are considered. A feature of the described approach is that oscillations in coefficients are allowed. Propagators for the Cauchy problems are constructed as oscillatory integrals by working in appropriate time-frequency symbol classes. A number of examples is considered and the sharpness of results is discussed. An exemplary treatment of dissipative terms shows how effective lower order terms can change asymptotic properties and thus complements the exposition.
Publicado por Springer, Basel, Springer Basel, Birkhäuser, 2014
ISBN 10: 3034808399 ISBN 13: 9783034808392
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 54,40
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware - This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts.Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some more technical proofs and background material omitted. Part 2 gives an overview of the asymptotic properties of solutions to hyperbolic equations and systems with time-dependent coefficients. First, an overview of known results is given for general scalar hyperbolic equations of higher order with constant coefficients. Then strongly hyperbolic systems with time-dependent coefficients are considered. A feature of the described approach is that oscillations in coefficients are allowed. Propagators for the Cauchy problems are constructed as oscillatory integrals by working in appropriate time-frequency symbol classes. A number of examples is considered and the sharpness of results is discussed. An exemplary treatment of dissipative terms shows how effective lower order terms can change asymptotic properties and thus complements the exposition.