Librería: SpringBooks, Berlin, Alemania
Original o primera edición
EUR 55,43
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoftcover. Condición: Very Good. 1. Auflage. Unread, some shelfwear. Immediately dispatched from Germany.
Librería: SpringBooks, Berlin, Alemania
Original o primera edición
EUR 62,58
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. 1. Auflage. Unread, with some shelfwear. Immediately dispatched from Germany.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 171,47
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer International Publishing, Springer International Publishing, 2020
ISBN 10: 3030224589 ISBN 13: 9783030224585
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 171,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 182,31
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Second Edition 2024 NO-PA16APR2015-KAP.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 189,04
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 193,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Springer International Publishing, Springer International Publishing Sep 2020, 2020
ISBN 10: 3030224589 ISBN 13: 9783030224585
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 171,19
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 340 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 191,57
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 213,69
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing AG, Cham, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 185,22
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 221,15
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. XVIII, 321 111 illus., 94 illus. in color. 1 Edition NO-PA16APR2015-KAP.
Publicado por Springer International Publishing, Springer International Publishing, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 213,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 173,21
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 235,52
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 239,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 321 pages. 9.25x6.25x0.75 inches. In Stock.
Publicado por Springer International Publishing, Springer International Publishing Sep 2024, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 213,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 556 pp. Englisch.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 259,55
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 247,56
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. New. book.
Publicado por Springer International Publishing AG, Cham, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 246,93
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Springer International Publishing AG, Cham, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Idioma: Inglés
Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America
EUR 255,03
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 314,33
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 2nd edition. 555 pages. 9.25x6.10x9.21 inches. In Stock.
Publicado por Springer International Publishing, 2020
ISBN 10: 3030224589 ISBN 13: 9783030224585
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 146,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Allows readers to analyze data sets with small samples and many featuresProvides a fast algorithm, based upon linear algebra, to analyze big dataIncludes several applications to multi-view data analyses, with a focus on bioinf.
Publicado por Springer International Publishing Sep 2020, 2020
ISBN 10: 3030224589 ISBN 13: 9783030224585
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 171,19
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics. 340 pp. Englisch.
Publicado por Springer, Berlin|Springer International Publishing|Springer, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 181,53
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own .
Publicado por Springer, Berlin, Springer International Publishing, Springer, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 213,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 527 pp. Englisch.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 221,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 2nd edition. 555 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 231,46
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. XVIII, 321 111 illus., 94 illus. in color.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 231,22
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. XVIII, 321 111 illus., 94 illus. in color.