Artículos relacionados a Unsupervised Feature Extraction Applied to Bioinformatics:...

Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach (Unsupervised and Semi-Supervised Learning) - Tapa dura

 
9783030224554: Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach (Unsupervised and Semi-Supervised Learning)

Sinopsis

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 


  • Allows readers to analyze data sets with small samples and many features;
  • Provides a fast algorithm, based upon linear algebra, to analyze big data;
  • Includes several applications to multi-view data analyses, with a focus on bioinformatics.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Prof. Taguchi is currently a Professor at Department of Physics, Chuo University. Prof. Taguchi received a master degree in Statistical Physics from Tokyo Institute of Technology, Japan in 1986, and PhD degree in Non-linear Physics from Tokyo Institute of Technology, Tokyo, Japan in 1988. He worked at Tokyo Institute of Technology and Chuo University. He is with Chuo University (Tokyo, Japan) since 1997. He currently holds the Professor position at this university. His main research interests are in the area of Bioinformatics, especially, multi-omics data analysis using linear algebra. Dr. Taguchi has published a book on bioinformatics, more than 100 journal papers, book chapters and papers in conference proceedings. 

 

De la contraportada

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 


  • Allows readers to analyzedata sets with small samples and many features;
  • Provides a fast algorithm, based upon linear algebra, to analyze big data;
  • Includes several applications to multi-view data analyses, with a focus on bioinformatics.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2019
  • ISBN 10 3030224554
  • ISBN 13 9783030224554
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de páginas340
  • Contacto del fabricanteno disponible

Comprar usado

Unread, with some shelfwear. Immediately...
Ver este artículo

EUR 11,90 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 11,90 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030224585: Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach (Unsupervised and Semi-Supervised Learning)

Edición Destacada

ISBN 10:  3030224589 ISBN 13:  9783030224585
Editorial: Springer, 2020
Tapa blanda

Resultados de la búsqueda para Unsupervised Feature Extraction Applied to Bioinformatics:...

Imagen de archivo

Taguchi, Y-h.
Publicado por Springer, 2019
ISBN 10: 3030224554 ISBN 13: 9783030224554
Antiguo o usado Tapa dura Original o primera edición

Librería: SpringBooks, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Very Good. 1. Auflage. Unread, with some shelfwear. Immediately dispatched from Germany. Nº de ref. del artículo: CEE-2402C-BIKINI-10-1000

Contactar al vendedor

Comprar usado

EUR 62,58
Convertir moneda
Gastos de envío: EUR 11,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Taguchi, Y-h. (Author)
Publicado por Springer, 2019
ISBN 10: 3030224554 ISBN 13: 9783030224554
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 321 pages. 9.25x6.25x0.75 inches. In Stock. Nº de ref. del artículo: zk3030224554

Contactar al vendedor

Comprar nuevo

EUR 238,03
Convertir moneda
Gastos de envío: EUR 11,90
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito