EUR 136,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 158,88
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 144,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 164,92
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 145,64
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 154,22
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Publicado por Springer US, Springer New York, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 168,73
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.
Publicado por Springer US, Springer US, 2012
ISBN 10: 1461361605 ISBN 13: 9781461361602
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 175,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 154,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 211,64
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 496 Index.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 163,36
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 224,37
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 496 Index.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 238,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por Springer US, Springer US Sep 2012, 2012
ISBN 10: 1461361605 ISBN 13: 9781461361602
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 171,19
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines. 496 pp. Englisch.
Publicado por Springer US, Springer US Nov 1994, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 496 pp. Englisch.
Publicado por Springer US, Springer US Sep 2012, 2012
ISBN 10: 1461361605 ISBN 13: 9781461361602
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 171,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 496 pp. Englisch.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 203,25
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines. 496 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 221,66
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 496 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 236,12
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 496 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 229,46
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 496.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 244,39
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 496.