Artículos relacionados a Theoretical Advances in Neural Computation and Learning

Theoretical Advances in Neural Computation and Learning - Tapa dura

 
9780792394785: Theoretical Advances in Neural Computation and Learning

Sinopsis

For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda­ tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu­ robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin­ ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an­ swers are needed to important fundamental questions such as (a) what can neu­ ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly? Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda­ tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu­ robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin­ ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an­ swers are needed to important fundamental questions such as (a) what can neu­ ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly? Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.

Reseña del editor

Theoretical Advances in Neural Computation and Learning brings together in one volume some of the recent advances in the development of a theoretical framework for studying neural networks. A variety of novel techniques from disciplines such as computer science, electrical engineering, statistics, and mathematics have been integrated and applied to develop ground-breaking analytical tools for such studies. This volume emphasizes the computational issues in artificial neural networks and compiles a set of pioneering research works, which together establish a general framework for studying the complexity of neural networks and their learning capabilities. This book represents one of the first efforts to highlight these fundamental results, and provides a unified platform for a theoretical exploration of neural computation. Each chapter is authored by a leading researcher and/or scholar who has made significant contributions in this area.
Part 1 provides a complexity theoretic study of different models of neural computation. Complexity measures for neural models are introduced, and techniques for the efficient design of networks for performing basic computations, as well as analytical tools for understanding the capabilities and limitations of neural computation are discussed. The results describe how the computational cost of a neural network increases with the problem size. Equally important, these results go beyond the study of single neural elements, and establish to computational power of multilayer networks.
Part 2 discusses concepts and results concerning learning using models of neural computation. Basic concepts such as VC-dimension and PAC-learning are introduced, and recent results relating neural networks to learning theory are derived. In addition, a number of the chapters address fundamental issues concerning learning algorithms, such as accuracy and rate of convergence, selection of training data, and efficient algorithms for learning useful classes of mappings.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 7,67 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781461361602: Theoretical Advances in Neural Computation and Learning

Edición Destacada

ISBN 10:  1461361605 ISBN 13:  9781461361602
Editorial: Springer, 2012
Tapa blanda

Resultados de la búsqueda para Theoretical Advances in Neural Computation and Learning

Imagen de archivo

Siu, Kai-Yeung
Publicado por Springer, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9780792394785

Contactar al vendedor

Comprar nuevo

EUR 147,74
Convertir moneda
Gastos de envío: EUR 7,67
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Siu, Kai-Yeung
Publicado por Springer, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190185942

Contactar al vendedor

Comprar nuevo

EUR 156,86
Convertir moneda
Gastos de envío: EUR 3,41
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Siu, Kai-Yeung
Publicado por Springer, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780792394785_new

Contactar al vendedor

Comprar nuevo

EUR 159,77
Convertir moneda
Gastos de envío: EUR 13,85
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Roychowdhury, Vwani|Kai-Yeung Siu|Orlitsky, Alon
Publicado por Springer US, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Nº de ref. del artículo: 5971524

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Siu, Kai-Yeung
Publicado por Springer, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 496 Index. Nº de ref. del artículo: 263099857

Contactar al vendedor

Comprar nuevo

EUR 214,69
Convertir moneda
Gastos de envío: EUR 3,41
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Vwani Roychowdhury
Publicado por Springer US, Springer US Nov 1994, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 496 pp. Englisch. Nº de ref. del artículo: 9780792394785

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Vwani Roychowdhury
Publicado por Springer US Nov 1994, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines. 496 pp. Englisch. Nº de ref. del artículo: 9780792394785

Contactar al vendedor

Comprar nuevo

EUR 203,25
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Siu, Kai-Yeung
Publicado por Springer, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 496 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Nº de ref. del artículo: 5829390

Contactar al vendedor

Comprar nuevo

EUR 224,85
Convertir moneda
Gastos de envío: EUR 7,52
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Vwani Roychowdhury
Publicado por Springer US, Springer New York, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines. Nº de ref. del artículo: 9780792394785

Contactar al vendedor

Comprar nuevo

EUR 168,73
Convertir moneda
Gastos de envío: EUR 64,52
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Roychowdhury Vwani Orlitsky Alon
Publicado por Springer, 1994
ISBN 10: 079239478X ISBN 13: 9780792394785
Nuevo Tapa dura
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 496. Nº de ref. del artículo: 183099867

Contactar al vendedor

Comprar nuevo

EUR 229,46
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito