Publicado por Princeton University Press, Princeton, NJ, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
EUR 43,34
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Good. 223 pp. Tightly bound. Spine not compromised. Text is free of markings. No ownership markings. PLEASE NOTE: Two reasons for the lower "good" rating. (1) The spine is faded from orange to peach in color. (2) There is a light ding to the right edge of pages 72-94.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 46,88
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Publicado por Princeton University Press, 1996
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: Anybook.com, Lincoln, Reino Unido
EUR 68,55
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Volume 139. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,450grams, ISBN:9780691011189.
Publicado por American Mathematical Society, 2025
ISBN 10: 1470473429 ISBN 13: 9781470473426
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 79,27
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por American Mathematical Society, US, 2025
ISBN 10: 1470473429 ISBN 13: 9781470473426
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 95,01
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoPaperback. Condición: New. The Memoirs of the AMS is devoted to the publication of new research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers of groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the American Mathematical Society. All papers are peer-reviewed.
EUR 87,60
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 186 pages. 7.01x0.98x10.00 inches. In Stock.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 95,92
Convertir monedaCantidad disponible: 7 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por American Mathematical Society, 2025
ISBN 10: 1470473429 ISBN 13: 9781470473426
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 98,74
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 109,44
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 108,26
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, US, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 119,63
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions.This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 121,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por American Mathematical Society, 2025
ISBN 10: 1470473429 ISBN 13: 9781470473426
Idioma: Inglés
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
EUR 117,75
Convertir monedaCantidad disponible: 7 disponibles
Añadir al carritoCondición: new.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 117,29
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por American Mathematical Society, 2025
ISBN 10: 1470473429 ISBN 13: 9781470473426
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 81,70
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por American Mathematical Society, 2025
ISBN 10: 1470473429 ISBN 13: 9781470473426
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 121,12
Convertir monedaCantidad disponible: 7 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 526.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 133,92
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. 1995. Paperback. . . . . .
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 133,80
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
EUR 150,55
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. In shrink wrap. Looks like an interesting title!
Publicado por American Mathematical Society, US, 2025
ISBN 10: 1470473429 ISBN 13: 9781470473426
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 88,98
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoPaperback. Condición: New. The Memoirs of the AMS is devoted to the publication of new research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers of groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the American Mathematical Society. All papers are peer-reviewed.
Publicado por Princeton University Press, US, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 122,75
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions.This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.
EUR 159,15
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 219 pages. 9.50x6.25x0.50 inches. In Stock.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 166,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. 1995. Paperback. . . . . . Books ship from the US and Ireland.
Publicado por Princeton University Press, New Jersey, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 140,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, nFn-1's, and the Pochhammer hypergeometric functions.This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems.Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform. The author introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por John Wiley & Sons, John Wiley & Sons, 2025
ISBN 10: 1470473429 ISBN 13: 9781470473426
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 123,56
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware.
Publicado por Princeton University Press, 1996
Librería: Librodifaccia, Alessandria, AL, Italia
EUR 65,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Buone. inglese Condizioni dell'esterno: Discrete con difetti, macchie Condizioni dell'interno: Buone.
Publicado por Princeton University Press, 1996
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 86,39
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The author introduced the concept of a local system on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: preigu, Osnabrück, Alemania
EUR 89,50
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Rigid Local Systems | Nicholas M. Katz | Taschenbuch | Einband - flex.(Paperback) | Englisch | 1995 | Princeton University Press | EAN 9780691011189 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Publicado por Princeton University Press, 1995
ISBN 10: 0691011184 ISBN 13: 9780691011189
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 105,48
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Riemann introduced the concept of a 'local system' on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, nFn-1's, and the Pochhammer hypergeometric functions.This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems.Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.