Publicado por Cambridge University Press, 2000
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: BBB-Internetbuchantiquariat, Bremen, Alemania
EUR 34,15
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover/Pappeinband. Condición: Sehr gut. Auflage: Reprint. 204 Seiten, Zustand: sehr gut; Namenszug im Vorsatz; MGA3194 9780521436137 Wenn das Buch einen Schutzumschlag hat, ist das ausdrücklich erwähnt. Rechnung mit ausgewiesener Mwst. Sprache: Englisch Gewicht in Gramm: 347.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 63,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Cambridge University Press (2000), Cambridge, 2000
Librería: Expatriate Bookshop of Denmark, Svendborg, Dinamarca
EUR 38,02
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Minor rubbing. VG. reprint. orig.wrappers Minor rubbing. VG. 23x15cm, xii,204 pp., PAPERBACK. Series: Cambridge Studies in Advanced Mathematics, 29. "This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications" - Publisher's description.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 60,76
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 220 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 69,71
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press 1992-10-01, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 59,55
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 60,28
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press CUP, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 69,32
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 220.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 62,54
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 66,26
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 69,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Cambridge University Press, 1990
ISBN 10: 052137510X ISBN 13: 9780521375108
Idioma: Inglés
Librería: Anybook.com, Lincoln, Reino Unido
EUR 78,22
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Poor. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In poor condition, suitable as a reading copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,500grams, ISBN:9780521375108.
Publicado por Cambridge University Press, 1990
ISBN 10: 052137510X ISBN 13: 9780521375108
Idioma: Inglés
Librería: Barnaby, Oxford, Reino Unido
EUR 81,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Good. Gently used copy with only minor signs of wear. Clean and fresh internally. Spine intact, bindings solid and secure. Publisher's note: A self-contained graduate textbook introducing the basic theory of Coxeter groups. Size: 23.6 x 15.6 x 1.6 cm. xii, 204 pp. Shipped Weight: Under 500 grams. Category: Mathematics ; Homology theory; Lie groups; Topological groups; Lie groups; Topological groups; ISBN: 052137510X. ISBN/EAN: 9780521375108. Add. Inventory No: 250321CTY0714751.
EUR 90,95
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 216 pages. 9.25x6.00x0.50 inches. In Stock.
Publicado por Cambridge University Press, 1990
ISBN 10: 052137510X ISBN 13: 9780521375108
Idioma: Inglés
Librería: Book Broker, Berlin, Alemania
EUR 86,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Gut. 213 S. Alle Bücher & Medienartikel von Book Broker sind stets in gutem & sehr gutem gebrauchsfähigen Zustand. Die Ausgabe des gelieferten Exemplars kann um bis zu 10 Jahre vom angegebenen Veröffentlichungsjahr abweichen und es kann sich um eine abweichende Auflage handeln. Unser Produktfoto entspricht dem hier angebotenen Artikel, dieser weist folgende Merkmale auf: Helle/saubere Seiten in fester Bindung. Leichte Gebrauchsspuren. Einband leicht bestoßen. Sprache: Englisch Gewicht in Gramm: 436 Gebundene Ausgabe, Maße: 15.6 cm x 1.6 cm x 23.6 cm.
Publicado por Cambridge University Press, Cambridge, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 67,81
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature. In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 91,55
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications.
Publicado por Cambridge University Press, Cambridge, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 85,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature. In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 61,33
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America
EUR 75,34
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature. In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Cambridge University Press, 1990
ISBN 10: 052137510X ISBN 13: 9780521375108
Idioma: Inglés
Librería: dsmbooks, Liverpool, Reino Unido
EUR 231,51
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Acceptable. Acceptable. book.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 60,29
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 378.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 57,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 216 pages. 9.25x6.00x0.50 inches. In Stock. This item is printed on demand.
Librería: moluna, Greven, Alemania
EUR 64,81
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A self-contained graduate textbook introducing the basic theory of Coxeter groups.This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for cours.
Publicado por Cambridge University Press, 1992
ISBN 10: 0521436133 ISBN 13: 9780521436137
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 79,53
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 220.