Librería: Fulano Books, Cambridge, MA, Estados Unidos de America
EUR 52,11
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carrito
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 75,10
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 93,63
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 94,85
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag New York Inc, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 108,75
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 84 pages. 9.25x6.10x0.20 inches. In Stock.
Publicado por Springer, Berlin, Springer International Publishing, Springer, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 79,16
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 128,22
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. New. book.
Publicado por Springer, Berlin, Springer International Publishing, Springer Nov 2017, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 74,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series. 72 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 97,39
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 100,37
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por Springer International Publishing, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 66,44
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a comparative study on short-term load forecasting, using different classes of state-of-the-art recurrent neural networks Describes tests of the models on both controlled synthetic tasks and on real datasets Provides a general ov.