Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Speedyhen, London, Reino Unido
EUR 68,73
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: NEW.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Better World Books: West, Reno, NV, Estados Unidos de America
EUR 61,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. 44. Used book that is in clean, average condition without any missing pages.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 81,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 85,22
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press 2022-05-26, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 75,97
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoHardcover. Condición: New.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 89,41
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 2022. New. Hardcover. . . . . .
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 77,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 78,91
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 84,63
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 89,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning'--.
Publicado por Cambridge University Press CUP, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 97,12
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 472.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 85,05
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoGebunden. Condición: New. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models a.
Publicado por Cambridge University Press, GB, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 106,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.
Publicado por Cambridge University Press, GB, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 108,58
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 110,08
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 2022. New. Hardcover. . . . . . Books ship from the US and Ireland.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 94,81
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Cambridge University Press, GB, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 117,77
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.
Publicado por Cambridge University Press, Cambridge, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 86,72
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models and theorists looking for a unifying framework for understanding intelligence. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 103,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 472.
Publicado por Cambridge University Press, GB, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 125,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 119,27
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 390 pages. 10.00x7.00x1.00 inches. In Stock.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 75,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 109,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models and theorists looking for a unifying framework for understanding intelligence. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Cambridge University Press (edition New), 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
EUR 86,96
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: As New. New. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported.
Publicado por Cambridge University Press, Cambridge, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 92,31
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models and theorists looking for a unifying framework for understanding intelligence. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 82,33
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 390 pages. 10.00x7.00x1.00 inches. In Stock. This item is printed on demand.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 86,18
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1060.
Publicado por Cambridge University Press, 2022
ISBN 10: 1316519333 ISBN 13: 9781316519332
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 88,02
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 472 This item is printed on demand.