Librería:
BooksRun, Philadelphia, PA, Estados Unidos de America
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 2 de febrero de 2016
It's a preowned item in almost perfect condition. It has no visible cosmetic imperfections. May come without any shrink wrap; pages are clean and not marred by notes or folds of any kind. N° de ref. del artículo 1316519333-10-1
This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.
Acerca de los autores:
Daniel A. Roberts was cofounder and CTO of Diffeo, an AI company acquired by Salesforce; a research scientist at Facebook AI Research; and a member of the School of Natural Sciences at the Institute for Advanced Study in Princeton, NJ. He was a Hertz Fellow, earning a PhD from MIT in theoretical physics, and was also a Marshall Scholar at Cambridge and Oxford Universities.
Sho Yaida is a research scientist at Meta AI. Prior to joining Meta AI, he obtained his PhD in physics at Stanford University and held postdoctoral positions at MIT and at Duke University. At Meta AI, he uses tools from theoretical physics to understand neural networks, the topic of this book.
Boris Hanin is an Assistant Professor at Princeton University in the Operations Research and Financial Engineering Department. Prior to joining Princeton in 2020, Boris was an Assistant Professor at Texas A&M in the Math Department and an NSF postdoc at MIT. He has taught graduate courses on the theory and practice of deep learning at both Texas A&M and Princeton.
Título: The Principles of Deep Learning Theory: An ...
Editorial: Cambridge University Press (edition New)
Año de publicación: 2022
Encuadernación: Hardcover
Condición: As New
Edición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530051428
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44117012-n
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 390 pages. 10.00x7.00x1.00 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1316519333
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models a. Nº de ref. del artículo: 541489311
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 44117012-n
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1060. Nº de ref. del artículo: C9781316519332
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781316519332
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models and theorists looking for a unifying framework for understanding intelligence. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781316519332
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44117012
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44117012
Cantidad disponible: Más de 20 disponibles