Librería: ALLBOOKS1, Direk, SA, Australia
EUR 77,70
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
EUR 92,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 92,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,30
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 101,57
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 115,44
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 96,02
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 96,02
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 111,53
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several 'subnetworks' (modules), which may perform the same or re lated tasks, and then use an 'appropriate' method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of 'lumped' or 'monolithic' networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.
Publicado por Springer US, Springer US, 1998
ISBN 10: 0792382900 ISBN 13: 9780792382904
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 114,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several 'subnetworks' (modules), which may perform the same or re lated tasks, and then use an 'appropriate' method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of 'lumped' or 'monolithic' networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 115,43
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag New York Inc., 2012
ISBN 10: 1461375401 ISBN 13: 9781461375401
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 129,10
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 325 pages, biography. BIC Classification: GPJ; PH; URY; UY. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 17. Weight in Grams: 510. . 2012. Softcover reprint of the original 1st ed. 1998. Paperback. . . . .
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 121,22
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 126,18
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 127,34
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 133,96
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 143,78
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 332.
EUR 144,61
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 332.
Publicado por Kluwer Academic Publishers, 1998
ISBN 10: 0792382900 ISBN 13: 9780792382904
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 153,07
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. This text presents a unified methodology for designing modular neural networks. A family of online algorithms for time series classification, prediction and identification are developed; and a rigorous mathematical analysis of their properties is provided. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 325 pages, biography. BIC Classification: UYQN. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 234 x 156 x 19. Weight in Grams: 642. . 1998. Hardback. . . . .
Publicado por Springer-Verlag New York Inc., 2012
ISBN 10: 1461375401 ISBN 13: 9781461375401
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 160,53
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 325 pages, biography. BIC Classification: GPJ; PH; URY; UY. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 17. Weight in Grams: 510. . 2012. Softcover reprint of the original 1st ed. 1998. Paperback. . . . . Books ship from the US and Ireland.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,57
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Kluwer Academic Publishers, 1998
ISBN 10: 0792382900 ISBN 13: 9780792382904
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 189,58
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. This text presents a unified methodology for designing modular neural networks. A family of online algorithms for time series classification, prediction and identification are developed; and a rigorous mathematical analysis of their properties is provided. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 325 pages, biography. BIC Classification: UYQN. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 234 x 156 x 19. Weight in Grams: 642. . 1998. Hardback. . . . . Books ship from the US and Ireland.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several 'subnetworks' (modules), which may perform the same or re lated tasks, and then use an 'appropriate' method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of 'lumped' or 'monolithic' networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network. 332 pp. Englisch.
Publicado por Springer US, Springer New York Okt 2012, 2012
ISBN 10: 1461375401 ISBN 13: 9781461375401
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several 'subnetworks' (modules), which may perform the same or re lated tasks, and then use an 'appropriate' method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of 'lumped' or 'monolithic' networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 332 pp. Englisch.
Publicado por Springer US, Springer US Sep 1998, 1998
ISBN 10: 0792382900 ISBN 13: 9780792382904
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several 'subnetworks' (modules), which may perform the same or re lated tasks, and then use an 'appropriate' method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of 'lumped' or 'monolithic' networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 332 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 150,22
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 332 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 150,26
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 332 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 154,22
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 332.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 154,26
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 332.