Publicado por LAP LAMBERT Academic Publishing Jan 2010, 2010
ISBN 10: 3838337441 ISBN 13: 9783838337449
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 79,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author''s postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 216 pp. Englisch.
Publicado por LAP Lambert Academic Publishing, 2010
ISBN 10: 3838337441 ISBN 13: 9783838337449
Idioma: Inglés
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 150,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por LAP LAMBERT Academic Publishing Jan 2010, 2010
ISBN 10: 3838337441 ISBN 13: 9783838337449
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 79,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author s postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data. 216 pp. Englisch.
Publicado por LAP Lambert Academic Publishing, 2010
ISBN 10: 3838337441 ISBN 13: 9783838337449
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 63,42
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology.
Publicado por LAP LAMBERT Academic Publishing, 2010
ISBN 10: 3838337441 ISBN 13: 9783838337449
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 79,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author s postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data.