Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author?s postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data.
"Sinopsis" puede pertenecer a otra edición de este libro.
Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author's postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,91 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 23,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author s postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data. 216 pp. Englisch. Nº de ref. del artículo: 9783838337449
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology. Nº de ref. del artículo: 5414290
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author''s postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 216 pp. Englisch. Nº de ref. del artículo: 9783838337449
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Data compression deals with removal of redundancy, reducing bandwidth and thus lowering transmission and storage costs. Telemetry data can be sensitive to inaccuracies and require lossless compression for exact reconstruction at the receiver. One technology that has been successfully applied in a wide range of applications is artificial neural networks (ANN), a massively parallel system with pattern recognition capabilities. This monograph is a reproduction of the author s postgraduate thesis work at Multimedia University, Malaysia. A two-stage predictor-encoder combination is proposed, incorporating a variety of feedforward, recurrent and radial basis ANN architectures, as the predictors. The encoders are well known compression algorithms. Characteristic features of the models, transmission issues and other practical considerations are taken into account to determine optimised configuration of the schemes. Significant compression results are reported, along with a critical review of the strengths and weaknesses of over 50 implementations simulated with satellite telemetry data. Nº de ref. del artículo: 9783838337449
Cantidad disponible: 1 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79038383374416
Cantidad disponible: 1 disponibles