Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 57,35
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 62,31
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Scholars' Press 2020-12, 2020
ISBN 10: 6138945468 ISBN 13: 9786138945468
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 59,56
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 80,46
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Scholars' Press Dez 2020, 2020
ISBN 10: 6138945468 ISBN 13: 9786138945468
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 59,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today¿s demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 120 pp. Englisch.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 121,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. New. book.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 61,66
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 59,87
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: moluna, Greven, Alemania
EUR 49,17
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Salemdeeb MohammedMohammed Salemdeeb received B.Sc., 2004 and M.Sc., 2011 in Elect. Eng.Comm. Syst. from IUG, Palestine, and PhD in Electr. & Comm. Eng. from Kocaeli University, Turkey, 2020. His research interest fields are Signal &.
Publicado por Scholars' Press Dez 2020, 2020
ISBN 10: 6138945468 ISBN 13: 9786138945468
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 59,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system. 120 pp. Englisch.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 60,62
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 83,88
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 88,08
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.