Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 158,92
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 158,92
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 155,28
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 158,91
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 159,84
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Netherlands, Springer Netherlands, 2011
ISBN 10: 9048157153 ISBN 13: 9789048157150
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 164,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape Ct. n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape Ct. n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 179,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 175,87
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia a.
Publicado por Springer Netherlands, Springer Netherlands Jan 2011, 2011
ISBN 10: 9048157153 ISBN 13: 9789048157150
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 186,09
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 197,46
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Editor(s): Vakakis, Alexander F. Num Pages: 300 pages, biography. BIC Classification: PBKJ; PHD; TGMD4. Category: (P) Professional & Vocational. Dimension: 254 x 178 x 15. Weight in Grams: 680. . 2010. 1st ed. Softcover of orig. ed. 2001. Paperback. . . . .
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Original o primera edición
EUR 157,61
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. The reader will find new analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. In addition, examples are provided of applications of these concepts to diverse problems of engineering and applied mathematics, such as nonlinear control of micro-gyroscopes, dynamics of floating offshore platforms, buckling of imperfect continua, order reduction of nonlinear systems, dynamics of nonlinear vibration absorbers, spatial localization and pattern formation in extended systems, singular asymptotics and nonlinear modal interactions and energy pumping in coupled oscillators. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 158,67
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 158,67
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Kluwer Academic Publishers, Dordrecht, 2002
ISBN 10: 0792370104 ISBN 13: 9780792370109
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 162,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A collection of papers on nonlinear normal modes and localization in dynamical systems. The reader should find analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. In addition, examples are provided of applications of these concepts to diverse problems of engineering and applied mathematics, such as nonlinear control of micro-gyroscopes, dynamics of floating offshore platforms, buckling of imperfect continua, order reduction of nonlinear systems, dynamics of nonlinear vibration absorbers, spatial localization and pattern formation in extended systems, singular asymptotics and nonlinear modal interactions and energy pumping in coupled oscillators. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Kluwer Academic Publishers, 2002
ISBN 10: 0792370104 ISBN 13: 9780792370109
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 230,45
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. This book includes analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. Editor(s): Vakakis, Alexander F. Num Pages: 300 pages, biography. BIC Classification: PHD; TGB. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 254 x 178 x 17. Weight in Grams: 738. . 2002. Hardback. . . . .
EUR 236,33
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 292 pages. 9.75x7.00x0.75 inches. In Stock.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 246,07
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Editor(s): Vakakis, Alexander F. Num Pages: 300 pages, biography. BIC Classification: PBKJ; PHD; TGMD4. Category: (P) Professional & Vocational. Dimension: 254 x 178 x 15. Weight in Grams: 680. . 2010. 1st ed. Softcover of orig. ed. 2001. Paperback. . . . . Books ship from the US and Ireland.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 242,89
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 233,42
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
EUR 244,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - This book contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. The reader will find new analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. In addition, examples are provided of applications of these concepts to diverse problems of engineering and applied mathematics, such as nonlinear control of micro-gyroscopes, dynamics of floating offshore platforms, buckling of imperfect continua, order reduction of nonlinear systems, dynamics of nonlinear vibration absorbers, spatial localization and pattern formation in extended systems, singular asymptotics and nonlinear modal interactions and energy pumping in coupled oscillators.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 267,70
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Kluwer Academic Publishers, 2002
ISBN 10: 0792370104 ISBN 13: 9780792370109
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 289,04
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. This book includes analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. Editor(s): Vakakis, Alexander F. Num Pages: 300 pages, biography. BIC Classification: PHD; TGB. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 254 x 178 x 17. Weight in Grams: 738. . 2002. Hardback. . . . . Books ship from the US and Ireland.
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 284,47
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. The reader will find new analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. In addition, examples are provided of applications of these concepts to diverse problems of engineering and applied mathematics, such as nonlinear control of micro-gyroscopes, dynamics of floating offshore platforms, buckling of imperfect continua, order reduction of nonlinear systems, dynamics of nonlinear vibration absorbers, spatial localization and pattern formation in extended systems, singular asymptotics and nonlinear modal interactions and energy pumping in coupled oscillators. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Kluwer Academic Publishers, Dordrecht, 2002
ISBN 10: 0792370104 ISBN 13: 9780792370109
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 307,71
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A collection of papers on nonlinear normal modes and localization in dynamical systems. The reader should find analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. In addition, examples are provided of applications of these concepts to diverse problems of engineering and applied mathematics, such as nonlinear control of micro-gyroscopes, dynamics of floating offshore platforms, buckling of imperfect continua, order reduction of nonlinear systems, dynamics of nonlinear vibration absorbers, spatial localization and pattern formation in extended systems, singular asymptotics and nonlinear modal interactions and energy pumping in coupled oscillators. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: moluna, Greven, Alemania
EUR 136,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia a.
Publicado por Springer Netherlands Jan 2011, 2011
ISBN 10: 9048157153 ISBN 13: 9789048157150
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape Ct. n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape Ct. n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996. 300 pp. Englisch.