Librería: California Books, Miami, FL, Estados Unidos de America
EUR 54,02
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Packt Publishing 5/30/2025, 2025
ISBN 10: 1836207034 ISBN 13: 9781836207030
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 75,19
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems. Book.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 83,06
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Buchpark, Trebbin, Alemania
EUR 30,59
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Librería: Rarewaves.com UK, London, Reino Unido
EUR 71,56
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 63,01
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 85,30
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 87,29
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: preigu, Osnabrück, Alemania
EUR 70,10
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. LLM Design Patterns | A Practical Guide to Building Robust and Efficient AI Systems | Ken Huang | Taschenbuch | Englisch | 2025 | Packt Publishing | EAN 9781836207030 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 78,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniquesKey Features: Learn comprehensive LLM development, including data prep, training pipelines, and optimization Explore advanced prompting techniques, such as chain-of-thought, tree-of-thought, RAG, and AI agents Implement evaluation metrics, interpretability, and bias detection for fair, reliable models Print or Kindle purchase includes a free PDF Elektronisches BuchBook Description:This practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment.You'll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems.By the end of this book, you'll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values.What You Will Learn: Implement efficient data prep techniques, including cleaning and augmentation Design scalable training pipelines with tuning, regularization, and checkpointing Optimize LLMs via pruning, quantization, and fine-tuning Evaluate models with metrics, cross-validation, and interpretability Understand fairness and detect bias in outputs Develop RLHF strategies to build secure, agentic AI systemsWho this book is for:This book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must.Table of Contents Introduction to LLM Design Patterns Data Cleaning for LLM Training Data Augmentation Handling Large Datasets for LLM Training Data Versioning Dataset Annotation and Labeling Training Pipeline Hyperparameter Tuning Regularization Checkpointing and Recovery Fine-Tuning Model Pruning Quantization Evaluation Metrics Cross-Validation Interpretability Fairness and Bias Detection Adversarial Robustness Reinforcement Learning from Human Feedback Chain-of-Thought Prompting Tree-of-Thoughts Prompting Reasoning and Acting Reasoning WithOut Observation Reflection Techniques Automatic Multi-Step Reasoning and Tool Use Retrieval-Augmented Generation Graph-Based RAG Advanced RAG Evaluating RAG Systems Agentic Patterns.