Artículos relacionados a LLM Design Patterns: A Practical Guide to Building...

LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems - Tapa blanda

 
9781836207030: LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems

Sinopsis

Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniques

Key Features

  • Learn comprehensive LLM development, including data prep, training pipelines, and optimization
  • Explore advanced prompting techniques, such as chain-of-thought, tree-of-thought, RAG, and AI agents
  • Implement evaluation metrics, interpretability, and bias detection for fair, reliable models
  • Print or Kindle purchase includes a free PDF eBook

Book Description

This practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment.

You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems.

By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values.

What you will learn

  • Implement efficient data prep techniques, including cleaning and augmentation
  • Design scalable training pipelines with tuning, regularization, and checkpointing
  • Optimize LLMs via pruning, quantization, and fine-tuning
  • Evaluate models with metrics, cross-validation, and interpretability
  • Understand fairness and detect bias in outputs
  • Develop RLHF strategies to build secure, agentic AI systems

Who this book is for

This book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must.

Table of Contents

  1. Introduction to LLM Design Patterns
  2. Data Cleaning for LLM Training
  3. Data Augmentation
  4. Handling Large Datasets for LLM Training
  5. Data Versioning
  6. Dataset Annotation and Labeling
  7. Training Pipeline
  8. Hyperparameter Tuning
  9. Regularization
  10. Checkpointing and Recovery
  11. Fine-Tuning
  12. Model Pruning
  13. Quantization
  14. Evaluation Metrics
  15. Cross-Validation
  16. Interpretability
  17. Fairness and Bias Detection
  18. Adversarial Robustness
  19. Reinforcement Learning from Human Feedback
  20. Chain-of-Thought Prompting
  21. Tree-of-Thoughts Prompting
  22. Reasoning and Acting
  23. Reasoning WithOut Observation
  24. Reflection Techniques
  25. Automatic Multi-Step Reasoning and Tool Use
  26. Retrieval-Augmented Generation
  27. Graph-Based RAG
  28. Advanced RAG
  29. Evaluating RAG Systems
  30. Agentic Patterns

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Ken Huang is a renowned AI expert, serving as co-chair of AI Safety Working Groups at Cloud Security Alliance and the AI STR Working Group at World Digital Technology Academy under the UN Framework. As CEO of DistributedApps, he provides specialized GenAI consulting. A key contributor to OWASP's Top 10 Risks for LLM Applications and NIST's Generative AI Working Group, Huang has authored influential books including Beyond AI (Springer, 2023), Generative AI Security (Springer, 2024), and Agentic AI: Theories and Practice (Springer, 2025) He's a global speaker at prestigious events such as Davos WEF, ACM, IEEE, and RSAC. Huang is also a member of the OpenAI Forum and project leader for the OWASP AI Vulnerability Scoring System project.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialPackt Publishing
  • Año de publicación2025
  • ISBN 10 1836207034
  • ISBN 13 9781836207030
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas534
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 11,99 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para LLM Design Patterns: A Practical Guide to Building...

Imagen del vendedor

Ken Huang
Publicado por Packt Publishing, 2025
ISBN 10: 1836207034 ISBN 13: 9781836207030
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book helps you gain practical skills to develop and deploy LLMs. Nº de ref. del artículo: 9781836207030

Contactar al vendedor

Comprar nuevo

EUR 87,15
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Huang, Ken
Publicado por Packt Publishing, 2025
ISBN 10: 1836207034 ISBN 13: 9781836207030
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26404381268

Contactar al vendedor

Comprar nuevo

EUR 89,81
Convertir moneda
Gastos de envío: EUR 9,95
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Huang, Ken
Publicado por Packt Publishing, 2025
ISBN 10: 1836207034 ISBN 13: 9781836207030
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 409854347

Contactar al vendedor

Comprar nuevo

EUR 90,12
Convertir moneda
Gastos de envío: EUR 10,39
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Huang, Ken
Publicado por Packt Publishing, 2025
ISBN 10: 1836207034 ISBN 13: 9781836207030
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18404381278

Contactar al vendedor

Comprar nuevo

EUR 93,66
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito