EUR 54,21
Cantidad disponible: 1 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 58,16
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 60,04
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 58,74
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pages cm.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 51,04
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 65,69
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pages cm First edition Includes bibliographical references and index.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 57,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 55,13
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Chapman and Hall/CRC -, 2024
ISBN 10: 036769820X ISBN 13: 9780367698201
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 54,55
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 55,52
Cantidad disponible: 1 disponibles
Añadir al carritoOther book format. Condición: New. New copy - Usually dispatched within 4 working days. 920.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 66,16
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. 2024. 1st Edition. paperback. . . . . .
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 66,73
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pages cm.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 67,30
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 442 pages. 10.00x7.00x10.00 inches. In Stock.
Publicado por Taylor and Francis Ltd, GB, 2024
ISBN 10: 036769820X ISBN 13: 9780367698201
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 83,02
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 82,32
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. 2024. 1st Edition. paperback. . . . . . Books ship from the US and Ireland.
EUR 51,05
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: NEW.
EUR 63,54
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Anuj Karpatne is an Assistant Professor in the Department of Computer Science at Virginia Tech. His research focuses on pushing on the frontiers of knowledge-guided machine learning by combining scientific knowledge and data in the design and learning of.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 115,61
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 124,53
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 123,34
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 135,90
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 132,69
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 123,08
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: preigu, Osnabrück, Alemania
EUR 71,20
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Knowledge Guided Machine Learning | Accelerating Discovery using Scientific Knowledge and Data | Anuj Karpatne (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2024 | Chapman and Hall/CRC | EAN 9780367698201 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 144,66
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Publicado por Taylor and Francis Ltd, GB, 2024
ISBN 10: 036769820X ISBN 13: 9780367698201
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 73,23
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 136,65
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 135,99
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 209.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 135,98
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 151,35
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.