Librería: preigu, Osnabrück, Alemania
EUR 74,35
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Intelligent Data Engineering and Automated Learning | Machine Learning from Imbalanced Data Sets | Syed Zahidur Rashid | Taschenbuch | Englisch | 2015 | Scholars' Press | EAN 9783639762211 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Publicado por Scholars' Press Jan 2015, 2015
ISBN 10: 3639762215 ISBN 13: 9783639762211
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 89,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets. 220 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 71,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rashid Syed ZahidurThe author s research interests are in the areas of machine learning, data mining, information acquisition, and decision theory. Specifically, in active learning, active inference, interactive machine learning, sta.
Publicado por Scholars' Press Jan 2015, 2015
ISBN 10: 3639762215 ISBN 13: 9783639762211
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 89,90
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner¿s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 220 pp. Englisch.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 89,90
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets.