This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner's performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner's performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rashid Syed ZahidurThe author s research interests are in the areas of machine learning, data mining, information acquisition, and decision theory. Specifically, in active learning, active inference, interactive machine learning, sta. Nº de ref. del artículo: 151400880
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets. 220 pp. Englisch. Nº de ref. del artículo: 9783639762211
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets. Nº de ref. del artículo: 9783639762211
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner¿s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 220 pp. Englisch. Nº de ref. del artículo: 9783639762211
Cantidad disponible: 2 disponibles