Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America
EUR 22,43
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 34,04
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 36,39
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient. Book.
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
EUR 32,96
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 35,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 37,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 32,75
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 43,42
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 49,13
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2020. 1st ed. paperback. . . . . .
Librería: Revaluation Books, Exeter, Reino Unido
EUR 52,34
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 166 pages. 9.00x6.00x0.50 inches. In Stock.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 47,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 51,59
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 49,64
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 60,43
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2020. 1st ed. paperback. . . . . . Books ship from the US and Ireland.
Publicado por Apress, Apress Nov 2020, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 58,84
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next yoüll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, yoüll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model¿s performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationAPress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 188 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 50,35
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Hyperparameter Optimization in Machine Learning | Make Your Machine Learning and Deep Learning Models More Efficient | Tanay Agrawal | Taschenbuch | xix | Englisch | 2020 | Apress | EAN 9781484265789 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Librería: medimops, Berlin, Alemania
EUR 16,11
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 58,84
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model's performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationWho This Book Is ForProfessionals and students working with machine learning. 188 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covers state-of-the-art techniques for hyperparameter tuningCovers implementation of advanced Bayesian optimization techniques on machine learning algorithms to complex deep learning frameworksExplains distr.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 59,55
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model's performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationWho This Book Is ForProfessionals and students working with machine learning.