Publicado por Springer Verlag, Singapore, Singapore, 2023
ISBN 10: 9819901871 ISBN 13: 9789819901876
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Original o primera edición
EUR 41,44
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complexthan pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate thehigh-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 37,92
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. 1st ed. 2023 edition NO-PA16APR2015-KAP.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 37,21
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
EUR 48,64
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 38,46
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
EUR 50,79
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 52,24
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
EUR 54,76
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Verlag, Singapore, Singapore, 2023
ISBN 10: 9819901847 ISBN 13: 9789819901845
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Original o primera edición
EUR 57,10
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complexthan pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate thehigh-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 59,35
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 46,02
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 65,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 51,87
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 64,13
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 57,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 54,49
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 75,91
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st ed. 2023 edition.
EUR 65,29
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer-Nature New York Inc, 2023
ISBN 10: 9819901871 ISBN 13: 9789819901876
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 71,09
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 260 pages. 9.25x6.10x0.55 inches. In Stock.
Publicado por Springer Verlag, Singapore, Singapore, 2023
ISBN 10: 9819901847 ISBN 13: 9789819901845
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
Original o primera edición
EUR 54,43
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complexthan pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate thehigh-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Springer Verlag, Singapore, Singapore, 2023
ISBN 10: 9819901871 ISBN 13: 9789819901876
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 67,34
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complexthan pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate thehigh-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
EUR 86,41
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 260 pages. 9.25x6.10x0.83 inches. In Stock.
EUR 41,85
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Hypergraph Computation | Qionghai Dai (u. a.) | Taschenbuch | xvi | Englisch | 2023 | Springer | EAN 9789819901876 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Publicado por Springer-Nature New York Inc, 2023
ISBN 10: 9819901871 ISBN 13: 9789819901876
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 40,97
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 260 pages. 9.25x6.10x0.55 inches. In Stock. This item is printed on demand.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 52,68
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 260 pages. 9.25x6.10x0.83 inches. In Stock. This item is printed on demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 77,91
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 79,06
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por Springer Nature Singapore, 2023
ISBN 10: 9819901871 ISBN 13: 9789819901876
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 39,60
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first comprehensive and systematic overview for hypergraph computationRich blend of basic knowledge, theoretical analysis, algorithm introduction, and key applicationsDescribes hypergraph computation applications in computer vision, med.
Publicado por Springer Nature Singapore, 2023
ISBN 10: 9819901847 ISBN 13: 9789819901845
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first comprehensive and systematic overview for hypergraph computationRich blend of basic knowledge, theoretical analysis, algorithm introduction, and key applicationsDescribes hypergraph computation applications in computer vision, med.
Publicado por Springer Verlag, Singapore, Singapore, 2023
ISBN 10: 9819901847 ISBN 13: 9789819901845
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición Impresión bajo demanda
EUR 80,65
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complexthan pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate thehigh-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.