Publicado por LAP LAMBERT Academic Publishing Apr 2024, 2024
ISBN 10: 620748729X ISBN 13: 9786207487295
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 96,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like reduced SLA violations, makespan, high throughput, and low energy consumption are crucial. Cloud applications, being computation-intensive, demand effective load balancing to prevent poor solutions due to exponential memory growth.To enhance load balancing in cloud computing, a new hybrid model is proposed, performing file classification using Filetype formatting. Three algorithms¿Ant Colony Optimization using Filetype Formatting (ACOFTF), Data Format Classification using Support Vector Machine (DFC-SVM), and Datatype Formatting DFTF/DTF¿are developed.Overall, the proposed hybrid metaheuristic approaches offer promising solutions for enhancing load balancing in cloud computing environments.Books on Demand GmbH, Überseering 33, 22297 Hamburg 356 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2024
ISBN 10: 620748729X ISBN 13: 9786207487295
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 146,43
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por LAP LAMBERT Academic Publishing, 2024
ISBN 10: 620748729X ISBN 13: 9786207487295
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 154,06
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por LAP Lambert Academic Publishing, 2024
ISBN 10: 620748729X ISBN 13: 9786207487295
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 84,73
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like redu.
Publicado por LAP LAMBERT Academic Publishing Apr 2024, 2024
ISBN 10: 620748729X ISBN 13: 9786207487295
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 96,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 356 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2024
ISBN 10: 620748729X ISBN 13: 9786207487295
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 98,06
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like reduced SLA violations, makespan, high throughput, and low energy consumption are crucial. Cloud applications, being computation-intensive, demand effective load balancing to prevent poor solutions due to exponential memory growth.To enhance load balancing in cloud computing, a new hybrid model is proposed, performing file classification using Filetype formatting. Three algorithms-Ant Colony Optimization using Filetype Formatting (ACOFTF), Data Format Classification using Support Vector Machine (DFC-SVM), and Datatype Formatting DFTF/DTF-are developed.Overall, the proposed hybrid metaheuristic approaches offer promising solutions for enhancing load balancing in cloud computing environments.