Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 111,05
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: INDOO, Avenel, NJ, Estados Unidos de America
EUR 114,29
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 129,85
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 116,71
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 121,02
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. In.
Publicado por Wiley-Blackwell 2009-08-07, 2009
ISBN 10: 047072210X ISBN 13: 9780470722107
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 117,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 123,25
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 748.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 137,82
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Provides a self-contained introduction to learning relational, probabilistic and possibilistic networks from data All basic concepts carefully explained and illustrated by examples throughout Contains background material including graphical representation, including Markov and Bayesian Networks. Includes a comprehensive bibliography. Series: Wiley Series in Computational Statistics. Num Pages: 404 pages, Illustrations. BIC Classification: PBT; TJ; UNF. Category: (P) Professional & Vocational. Dimension: 240 x 160 x 27. Weight in Grams: 718. . 2009. 2nd Revised edition. Hardcover. . . . .
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 136,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ubiquity Trade, Miami, FL, Estados Unidos de America
EUR 166,03
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand new! Please provide a physical shipping address.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 145,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 2nd edition. 408 pages. 9.21x6.22x1.02 inches. In Stock.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 173,03
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Provides a self-contained introduction to learning relational, probabilistic and possibilistic networks from data All basic concepts carefully explained and illustrated by examples throughout Contains background material including graphical representation, including Markov and Bayesian Networks. Includes a comprehensive bibliography. Series: Wiley Series in Computational Statistics. Num Pages: 404 pages, Illustrations. BIC Classification: PBT; TJ; UNF. Category: (P) Professional & Vocational. Dimension: 240 x 160 x 27. Weight in Grams: 718. . 2009. 2nd Revised edition. Hardcover. . . . . Books ship from the US and Ireland.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 140,66
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - Graphical models are of increasing importance in applied statistics, and in particular in data mining. Providing a self-contained introduction and overview to learning relational, probabilistic, and possibilistic networks from data, this second edition of Graphical Models is thoroughly updated to include the latest research in this burgeoning field, including a new chapter on visualization. The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research.