Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 97,65
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 97,65
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 104,31
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 104,56
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 110,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 110,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 143,00
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 564.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 144,81
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 564.
EUR 95,80
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Geometrical Methods in Variational Problems | N. A. Bobylov (u. a.) | Taschenbuch | xvi | Englisch | 2012 | Springer | EAN 9789401059558 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Publicado por Springer Netherlands, Springer Netherlands Jul 1999, 1999
ISBN 10: 0792357809 ISBN 13: 9780792357803
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 564 pp. Englisch.
EUR 112,94
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass.
Publicado por Springer Netherlands, Springer Netherlands, 1999
ISBN 10: 0792357809 ISBN 13: 9780792357803
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 116,27
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 174,71
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por Springer Netherlands Okt 2012, 2012
ISBN 10: 9401059551 ISBN 13: 9789401059558
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass. 564 pp. Englisch.
Publicado por Springer Netherlands Jul 1999, 1999
ISBN 10: 0792357809 ISBN 13: 9780792357803
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass. 564 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. 1. Preliminaries. 2. Minimization of Nonlinear Functionals. 3. Homotopic Methods in Variational Problems. 4. Topological Characteristics of Extremals of Variational Problems. 5. Applications. Bibliographical Comments. References. Index. .
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. 1. Preliminaries. 2. Minimization of Nonlinear Functionals. 3. Homotopic Methods in Variational Problems. 4. Topological Characteristics of Extremals of Variational Problems. 5. Applications. Bibliographical Comments. References. Index. .
Librería: Majestic Books, Hounslow, Reino Unido
EUR 151,91
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 564 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 153,34
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 564 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 151,52
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 564.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 155,58
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 564.
Librería: preigu, Osnabrück, Alemania
EUR 95,80
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Geometrical Methods in Variational Problems | N. A. Bobylov (u. a.) | Buch | xvi | Englisch | 1999 | Springer Netherland | EAN 9780792357803 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Publicado por Springer, Springer Okt 2012, 2012
ISBN 10: 9401059551 ISBN 13: 9789401059558
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -1 Preliminaries.- 1.1 Metric and Normed Spaces.- 1.2 Compactness.- 1.3 Linear Functional and Dual Spaces.- 1.4 Linear Operators.- 1.5 Nonlinear Operators and Functionals.- 1.6 Contraction Mapping Principle, Implicit Function Theorem, and Differential Equations on a Banach Space.- 2 Minimization of Nonlinear Functionals.- 2.1 Extrema of Smooth Functionals.- 2.2 Extremum of Lipschitzian and Convex Functionals.- 2.3 Weierstass Theorems.- 2.4 Monotonicity.- 2.5 Variational Principles.- 2.6 Additional Remarks.- 3 Homotopic Methods in Variational Problems.- 3.1 Deformations of Functionals on Hilbert Spaces.- 3.2 Deformations of Functionals on Banach Spaces.- 3.3 Global Deformations of Functionals.- 3.4 Deformation of Problems of the Calculus of Variations.- 3.5 Deformations of Lipschitzian Functions.- 3.6 Global Deformations of Lipschitzian Functions.- 3.7 Deformations of Mathematical Programming Problems.- 3.8 Deformations of Lipschitzian Functionals.- 3.9 Additional Remarks.- 4 Topological Characteristics of Extremals of Variational Problems.- 4.1 Smooth Manifolds and Differential Forms.- 4.2 Degree of Mapping.- 4.3 Rotation of Vector Fields in Finite-Dimensional Spaces.- 4.4 Vector Fields in Infinite-Dimensional Spaces.- 4.5 Computation of the Topological Index.- 4.6 Topological Index of Zero of an Isolated Minimum.- 4.7 Euler Characteristic and the Topological Index of an Isolated Critical Set.- 4.8 Topological Index of Extremals of Problems of the Calculus of Variations.- 4.9 Topological Index of Optimal Controls.- 4.10 Topological Characteristic s of Critical Points of Nonsmooth Functionals.- 4.11 Additional Remarks.- 5 Applications.- 5.1 Existence Theorems.- 5.2 Bounds of the Number of Solutions to Variational Problems.- 5.3 Applications of the Homotopic Method.- 5.4 Study of Degenerate Extremals.- 5.5 Morse Lemmas.- 5.6 Well-Posedness of Variational Problems. Ulam Problem.- 5.7 Gradient Procedures.- 5.8 Bifurcation of Extremals of Variational Problems.- 5.9 Eigenvalues of Potential Operators.- 5.10 Additional Remarks.- Bibliographical Comments.- References.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 564 pp. Englisch.