This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods.
Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.
"Sinopsis" puede pertenecer a otra edición de este libro.
"... the book is a valuable contribution to the literature. It is well-written, self-contained and it has an extensive bibliography, especially with regard to the literature in the Russian language."
(Mathematical Reviews, 2001a)
Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,66 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,65 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789401059558
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070055804
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789401059558_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789401059558
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass. 564 pp. Englisch. Nº de ref. del artículo: 9789401059558
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. 1. Preliminaries. 2. Minimization of Nonlinear Functionals. 3. Homotopic Methods in Variational Problems. 4. Topological Characteristics of Extremals of Variational Problems. 5. Applications. Bibliographical Comments. References. Index. . Nº de ref. del artículo: 5832591
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 564. Nº de ref. del artículo: 26126777696
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 564 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 133809855
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 564. Nº de ref. del artículo: 18126777706
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 564 pp. Englisch. Nº de ref. del artículo: 9789401059558
Cantidad disponible: 2 disponibles