Publicado por Princeton University Press, 2016
ISBN 10: 069117055X ISBN 13: 9780691170558
Idioma: Inglés
Librería: My Dead Aunt's Books, Hyattsville, MD, Estados Unidos de America
EUR 28,59
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. Unmarked trade paperback.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
EUR 72,56
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
EUR 72,56
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
EUR 73,25
Cantidad disponible: 5 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 148,17
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 150,54
Cantidad disponible: 4 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 169,97
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 154,75
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
EUR 164,10
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: new.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 164,46
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Series: Annals of Mathematics Studies. Num Pages: 272 pages, 7 line illus. BIC Classification: PBKF; PBM; PBP. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152 x 20. Weight in Grams: 514. . 2016. Illustrated. Hardcover. . . . .
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 170,78
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 180,44
Cantidad disponible: 4 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 180,45
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. In.
Publicado por Princeton University Press 2016-06-07, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 184,50
Cantidad disponible: 4 disponibles
Añadir al carritoHardcover. Condición: New.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 154,89
Cantidad disponible: 4 disponibles
Añadir al carritoGebunden. Condición: New.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 206,34
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Series: Annals of Mathematics Studies. Num Pages: 272 pages, 7 line illus. BIC Classification: PBKF; PBM; PBP. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152 x 20. Weight in Grams: 514. . 2016. Illustrated. Hardcover. . . . . Books ship from the US and Ireland.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 208,52
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 312.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 218,15
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 312.
Publicado por Princeton University Press, US, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 222,69
Cantidad disponible: 10 disponibles
Añadir al carritoHardback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Publicado por Princeton University Press, US, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 230,52
Cantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 219,70
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 312 pages. 9.50x6.00x0.50 inches. In Stock.
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 218,34
Cantidad disponible: 4 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 529.
Publicado por Princeton University Press Mai 2016, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 191,17
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface.Isroil Ikromov and Detlef Müller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Müller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger.Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Publicado por Princeton University Press, US, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 224,22
Cantidad disponible: 10 disponibles
Añadir al carritoHardback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Publicado por Princeton University Press, US, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 209,38
Cantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.