Librería:
Ria Christie Collections, Uxbridge, Reino Unido
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 25 de marzo de 2015
In. N° de ref. del artículo ria9780691170541_new
This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Acerca del autor: Isroil A. Ikromov is professor of mathematics at Samarkand State University in Uzbekistan. Detlef Muller is professor of mathematics at the University of Kiel in Germany.
Título: Fourier Restriction for Hypersurfaces in ...
Editorial: Princeton University Press
Año de publicación: 2016
Encuadernación: Encuadernación de tapa dura
Condición: New
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Hardcover. Condición: New. Nº de ref. del artículo: N-gj8a-04579
Cantidad disponible: 1 disponibles
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Hardcover. Condición: New. Nº de ref. del artículo: N-gj8a-04578
Cantidad disponible: 1 disponibles
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 194786
Cantidad disponible: 5 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691170541
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 594886048
Cantidad disponible: 3 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Nº de ref. del artículo: 8fe367b744bea99ab62a2fe9e5150f76
Cantidad disponible: 3 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Series: Annals of Mathematics Studies. Num Pages: 272 pages, 7 line illus. BIC Classification: PBKF; PBM; PBP. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152 x 20. Weight in Grams: 514. . 2016. Illustrated. Hardcover. . . . . Nº de ref. del artículo: V9780691170541
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691170541
Cantidad disponible: 3 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-WLY-9780691170541
Cantidad disponible: 3 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface.Isroil Ikromov and Detlef Müller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Müller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger.Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields. Nº de ref. del artículo: 9780691170541
Cantidad disponible: 2 disponibles