Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
EUR 6,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. First edition, first printing, xiii, 237 pp., Hardcover, previous owner's name to the front paste down, endpapers foxed, two minor instances of highlighting, else text clean & binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 14,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages.
Librería: Reader's Corner, Inc., Raleigh, NC, Estados Unidos de America
Original o primera edición
EUR 21,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: As New. No Jacket. 1st Edition. This is a fine, as new, hardcover first edition copy, no DJ, yellow spine. 237 pages with index.
Publicado por New York, Springer [1989]., 1989
ISBN 10: 0387970401 ISBN 13: 9780387970400
Idioma: Inglés
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 10,59
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 11 BRE 9780387970400 Sprache: Englisch Gewicht in Gramm: 550.
Librería: Textbooks_Source, Columbia, MO, Estados Unidos de America
EUR 33,98
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: New. 1989th Edition. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes).
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
EUR 34,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Publicado por Springer 1989, 1989
Librería: Hard to Find Books NZ (Internet) Ltd., Dunedin, OTAGO, Nueva Zelanda
Miembro de asociación: IOBA
EUR 12,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSuper octavo hardcover (VG); all our specials have minimal description to keep listing them viable. They are at least reading copies, complete and in reasonable condition, but usually secondhand; frequently they are superior examples. Ordering more than one book may reduce your overall postage costs.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 49,57
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer-Verlag New York Inc., New York, NY, 2011
ISBN 10: 1461288711 ISBN 13: 9781461288718
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 69,28
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. "About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 66,96
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 66,96
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 65,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 65,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 58,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 62,75
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 62,75
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 59,15
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Publicado por Springer-Verlag New York Inc., New York, NY, 1989
ISBN 10: 0387970401 ISBN 13: 9780387970400
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 77,40
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. "About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 75,00
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 260.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 76,46
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 62,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 77,54
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 256.
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
EUR 75,18
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: New. In shrink wrap. Looks like an interesting title!
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 95,24
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2011. Softcover reprint of the original 1st ed. 1989. paperback. . . . . .
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 101,27
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 1989. Hardcover. . . . . .
Publicado por Springer New York, Springer New York Okt 1989, 1989
ISBN 10: 0387970401 ISBN 13: 9780387970400
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 55,59
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -'About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. ' - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a 'smooth' number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch.
Publicado por Springer New York, Springer US, 2011
ISBN 10: 1461288711 ISBN 13: 9781461288718
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 59,07
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. ' - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a 'smooth' number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 97,24
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 260 pages. 8.75x6.00x0.50 inches. In Stock.
Publicado por Springer New York, Springer New York, 1989
ISBN 10: 0387970401 ISBN 13: 9780387970400
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 60,64
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. ' - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a 'smooth' number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 118,40
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2011. Softcover reprint of the original 1st ed. 1989. paperback. . . . . . Books ship from the US and Ireland.