Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 18,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Tredition Gmbh 7/2/2024, 2024
ISBN 10: 3384276647 ISBN 13: 9783384276643
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 21,26
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Exploiting Covariance Structure for Signal Detection in Array Processing 0.37. Book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 21,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 28,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 28,82
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: CitiRetail, Stevenage, Reino Unido
EUR 28,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Array processing involves utilizing multiple sensors (e.g., antennas) to collect data from a spatial environment. The primary objective is to extract the desired signal from a mixture of noise and interference. Several techniques exist for signal detection, including beamforming, matched filtering, and likelihood ratio tests. These methods typically rely on assumptions about the signal and noise characteristics. However, real-world environments often violate these assumptions. Noise may not be purely white (uncorrelated) and can exhibit spatial coherence. Additionally, interference might be structured and non-stationary. Here's where exploiting the covariance structure of the received data becomes advantageous. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 28,10
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Array processing involves utilizing multiple sensors (e.g., antennas) to collect data from a spatial environment. The primary objective is to extract the desired signal from a mixture of noise and interference. Several techniques exist for signal detection, including beamforming, matched filtering, and likelihood ratio tests. These methods typically rely on assumptions about the signal and noise characteristics.However, real-world environments often violate these assumptions. Noise may not be purely white (uncorrelated) and can exhibit spatial coherence. Additionally, interference might be structured and non-stationary. Here's where exploiting the covariance structure of the received data becomes advantageous.tredition GmbH, Heinz-Beusen-Stieg 5, 22926 Ahrensburg 108 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 28,10
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Exploiting Covariance Structure for Signal Detection in Array Processing | Perry | Taschenbuch | Englisch | 2024 | tredition | EAN 9783384276643 | Verantwortliche Person für die EU: tredition, Heinz-Beusen-Stieg 5, 22926 Ahrensburg, support[at]tredition[dot]com | Anbieter: preigu.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 28,10
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Array processing involves utilizing multiple sensors (e.g., antennas) to collect data from a spatial environment. The primary objective is to extract the desired signal from a mixture of noise and interference. Several techniques exist for signal detection, including beamforming, matched filtering, and likelihood ratio tests. These methods typically rely on assumptions about the signal and noise characteristics.However, real-world environments often violate these assumptions. Noise may not be purely white (uncorrelated) and can exhibit spatial coherence. Additionally, interference might be structured and non-stationary. Here's where exploiting the covariance structure of the received data becomes advantageous. 108 pp. Englisch.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 28,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Array processing involves utilizing multiple sensors (e.g., antennas) to collect data from a spatial environment. The primary objective is to extract the desired signal from a mixture of noise and interference. Several techniques exist for signal detection, including beamforming, matched filtering, and likelihood ratio tests. These methods typically rely on assumptions about the signal and noise characteristics.However, real-world environments often violate these assumptions. Noise may not be purely white (uncorrelated) and can exhibit spatial coherence. Additionally, interference might be structured and non-stationary. Here's where exploiting the covariance structure of the received data becomes advantageous.