Librería: Books From California, Simi Valley, CA, Estados Unidos de America
EUR 47,05
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Very Good.
Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 51,99
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Idioma: Inglés
Publicado por Springer International Publishing AG, Cham, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 67,90
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metricssuch as energy-efficiency, throughput, and latencywithout sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas. This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 65,60
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 65,18
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 68,96
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
EUR 68,96
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 68,96
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 67,55
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: SMASS Sellers, IRVING, TX, Estados Unidos de America
EUR 72,00
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 64,54
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 77,58
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 77,58
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 66,48
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 75,17
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer International Publishing AG, Cham, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 83,56
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metricssuch as energy-efficiency, throughput, and latencywithout sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas. This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 112,99
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 275 pages. 9.25x7.51x9.25 inches. In Stock.
Idioma: Inglés
Publicado por Springer International Publishing, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 74,89
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics-such as energy-efficiency, throughput, and latency-without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Idioma: Inglés
Publicado por Springer Nature Switzerland, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Librería: preigu, Osnabrück, Alemania
EUR 66,85
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Efficient Processing of Deep Neural Networks | Vivienne Sze (u. a.) | Taschenbuch | xxi | Englisch | 2020 | Springer Nature Switzerland | EAN 9783031006388 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Idioma: Inglés
Publicado por Springer International Publishing Jun 2020, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 74,89
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics-such as energy-efficiency, throughput, and latency-without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas. 356 pp. Englisch.
Idioma: Inglés
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Librería: moluna, Greven, Alemania
EUR 64,33
Cantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer .
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing Jun 2020, 2020
ISBN 10: 3031006380 ISBN 13: 9783031006388
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 74,89
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics¿such as energy-efficiency, throughput, and latency¿without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 356 pp. Englisch.